- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在检查 tf.ConcreteFunction
时,我很难理解 structured_input_signature
的返回类型。
在谷歌文档中 https://www.tensorflow.org/guide/concrete_function#using_a_concrete_function返回一个元组。例如
@tf.function
def power(a,b):
print('Tracing "power"\n')
return a**b
float_power = power.get_concrete_function(
a = tf.TensorSpec(shape=[], dtype=tf.float32),
b = tf.TensorSpec(shape=[], dtype=tf.float32))
print(float_power.structured_input_signature)
print(float_power.structured_outputs)
打印
Tracing "power"
((TensorSpec(shape=(), dtype=tf.float32, name='a'), TensorSpec(shape=(), dtype=tf.float32, name='b')), {})
Tensor("Identity:0", shape=(), dtype=float32)
但是,当模块被保存和加载时,输出略有不同:
float_power_mod = tf.Module()
float_power_mod.float_power = float_power
tf.saved_model.save(float_power_mod, './float_power_mod')
mod_4 = tf.saved_model.load('./float_power_mod')
float_power_func = mod_4.signatures['serving_default']
print(float_power_func.structured_input_signature)
打印
((),
{'a': TensorSpec(shape=(), dtype=tf.float32, name='a'),
'b': TensorSpec(shape=(), dtype=tf.float32, name='b')})
在 structured_input_signature 的返回元组中填充元组与字典的逻辑是什么?
最佳答案
dict
允许我们将关键字参数传递给函数,这样我们就可以将实值输入张量标记为 TF 接受的相应占位符。
result = float_power_func(a=tf.constant(2.), b=tf.constant(3.))
为了保存一个TF模型,首先,我们需要序列化张量。在导出的目录下,您可以找到一个 .pb
文件,这是用于序列化整个模型的 protobuf。通过模型,我的意思是张量的集合以及这些张量之间的关系,所有这些都被捕获在 protobuf 中。虽然TF已经提供了序列化的函数,以你的代码为例
from tensorflow.python.saved_model import nested_structure_coder
coder = nested_structure_coder.StructureCoder()
signature_proto = coder.encode_structure(float_power.structured_input_signature)
print(signature_proto)
打印
tuple_value {
values {
tuple_value {
values {
tensor_spec_value {
name: "a"
shape {
}
dtype: DT_FLOAT
}
}
values {
tensor_spec_value {
name: "b"
shape {
}
dtype: DT_FLOAT
}
}
}
}
values {
dict_value {
}
}
}
但是,上面的序列化结构并不能满足需求。我们不能将输入分配给键,因为返回是一个元组。
((TensorSpec(shape=(), dtype=tf.float32, name='a'), TensorSpec(shape=(), dtype=tf.float32, name='b')), {})
您可能已经意识到,序列化模型的实际过程要复杂得多,其中涉及为服务添加新标签和签名、为分发策略添加副本内和交叉复制上下文,等等。不管复杂度如何,核心都是一样的,获取签名并序列化,代码来源here
signatures = signature_serialization.canonicalize_signatures(signatures)
signatures
被重新打包,输入张量作为键值对移动到 dict_value
中
value {
canonicalized_input_signature {
tuple_value {
values {
tuple_value {
}
}
values {
dict_value {
fields {
key: "a"
value {
tensor_spec_value {
name: "a"
shape {
}
dtype: DT_FLOAT
}
}
}
fields {
key: "b"
value {
tensor_spec_value {
name: "b"
shape {
}
dtype: DT_FLOAT
}
}
}
}
}
}
}
解码后得到
((),
{'a': TensorSpec(shape=(), dtype=tf.float32, name='a'),
'b': TensorSpec(shape=(), dtype=tf.float32, name='b')})
关于python - Tensorflow 2.0具体函数structured_input_signature返回值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59638946/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!