gpt4 book ai didi

python - 使用 numpy.reshape() 反转 skimage view_as_blocks()

转载 作者:行者123 更新时间:2023-12-04 01:34:57 24 4
gpt4 key购买 nike

我想将具有 2 个 channel 的 4x4 图像分成多个不重叠的正方形。

之后,我想重建图像。

from skimage.util import view_as_blocks

# create testM array
array([[[[0.53258505, 0.31525832, 0.21378392, 0.5019507 ],
[0.31612498, 0.24320562, 0.93560226, 0.08232264],
[0.89784454, 0.12741783, 0.88049819, 0.29542855],
[0.11336386, 0.71023215, 0.45679456, 0.2318959 ]],

[[0.61038755, 0.74389586, 0.85199794, 0.46680889],
[0.01701045, 0.93953861, 0.03183684, 0.00740579],
[0.58878569, 0.71348253, 0.33221104, 0.12276253],
[0.04026615, 0.53837528, 0.06759152, 0.27477069]]]])

# use view_as_blocks() to get "grid" image
testB = view_as_blocks(testM, block_shape=(1,2,2,2)).reshape(-1,*(1,2,2,2))

现在我有多个大小为 2x2 的数组 block :

array([[[[[0.53258505, 0.31525832],
[0.31612498, 0.24320562]],

...

[[0.33221104, 0.12276253],
[0.06759152, 0.27477069]]]]])


但是,我无法将它 reshape 回原来的形状:

testB.reshape(1,2,4,4)

导致这个。每个“ block ”只是一个接一个地附加值,但不被视为一个 block 。

array([[[[0.53258505, 0.31525832, 0.31612498, 0.24320562],
[0.61038755, 0.74389586, 0.01701045, 0.93953861],
[0.21378392, 0.5019507 , 0.93560226, 0.08232264],
[0.85199794, 0.46680889, 0.03183684, 0.00740579]],

[[0.89784454, 0.12741783, 0.11336386, 0.71023215],
[0.58878569, 0.71348253, 0.04026615, 0.53837528],
[0.88049819, 0.29542855, 0.45679456, 0.2318959 ],
[0.33221104, 0.12276253, 0.06759152, 0.27477069]]]])

在使用 reshape() 之前,我尝试了多个 .swapaxes(),但就是无法正常工作。

最佳答案

发生的事情是您的 .reshape((-1, 1, 2, 2, 2)),即您对 block 的线性化,导致复制:

import numpy as np
from skimage.util import view_as_blocks

arr = np.arange(24).astype(np.uint8).reshape((4, 6))
blocked = view_as_blocks(arr, (2, 3))
blocked_reshaped = blocked.reshape((-1, 2, 3))
print(arr.shape)
print(arr.strides)
print(blocked.shape)
print(blocked.strides)
print(blocked_reshaped.shape)
print(blocked_reshaped.strides)
print(np.may_share_memory(blocked, blocked_reshaped))

结果:

(4, 6)
(6, 1)
(2, 2, 2, 3)
(12, 3, 6, 1)
(4, 2, 3)
(6, 3, 1)
False

步长是一个线索,表明数组的元素在底层内存中不再处于相同的线性顺序,因此 reshape 会导致您观察到的奇怪转置:

block_reshaped_orig = blocked_reshaped.reshape((4, 6))
print(arr)
print(block_reshaped_orig)

结果:

[[ 0  1  2  3  4  5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]]
[[ 0 1 2 6 7 8]
[ 3 4 5 9 10 11]
[12 13 14 18 19 20]
[15 16 17 21 22 23]]

我看到两个选项:

  • 如果您可以避免 reshape 和复制,那么最后的 reshape 调用就可以正常工作。
  • 如果您需要为您正在进行的其他一些处理重新整形,那么有点讽刺的是,您可以使用另一个 view_as_blocks 调用并重新整形以恢复原始顺序:
print(
view_as_blocks(blocked_reshaped_orig, (2, 3)).reshape((4, -1))
)

结果:

[[ 0  1  2  3  4  5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]]

希望对您有所帮助!

关于python - 使用 numpy.reshape() 反转 skimage view_as_blocks(),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59884413/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com