gpt4 book ai didi

python-2.7 - 在 ROS 中运行 tensorRT 时得到 "LogicError: explicit_context_dependent failed: invalid device context - no currently active context? "

转载 作者:行者123 更新时间:2023-12-04 01:33:25 26 4
gpt4 key购买 nike

我在 TensorRT(使用 python)中有一个推理代码。我想在 ROS 中运行此代码,但在尝试分配缓冲区时出现以下错误:
LogicError: explicit_context_dependent failed: invalid device context - no currently active context?
该代码在 ROS 包中运行良好。 ROS 节点发布图像,给定的代码获取图像以进行推理。推理代码如下所示:

#!/usr/bin/env python
# Revision $Id$

import rospy
from std_msgs.msg import String
from cv_bridge import CvBridge
import cv2
import os
import numpy as np
import argparse
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import torch._utils
from PIL import Image
from sensor_msgs.msg import Image as ImageMsg
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import random
import sys
import common
import shutil
from itertools import chain


TRT_LOGGER = trt.Logger()
# cuda.init()


class ModelData(object):

def __init__(self):

self.MODEL_PATH = "./MobileNet_v2_Final.onnx" ## converted model from pytorch to onnx

self.batch_size = 1
self.num_classes = 3


self.engine = build_int8_engine(self.MODEL_PATH, self.batch_size)
self.context = self.engine.create_execution_context()


### ROS PART
self.bridge_ROS = CvBridge()
self.loop_rate = rospy.Rate(1)
self.pub = rospy.Publisher('Image_Label', String, queue_size=1)

print('INIT Successfully')

def callback(self, msg):
rospy.loginfo('Image received...')

cv_image = self.bridge_ROS.imgmsg_to_cv2(msg, desired_encoding="passthrough")

inputs, outputs, bindings, stream = common.allocate_buffers(context.engine)
[output] = common.do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream, batch_size=effective_batch_size)



def listener(self):

rospy.Subscriber("chatter", ImageMsg, self.callback)

while not rospy.is_shutdown():
rospy.loginfo('Getting image...')
self.loop_rate.sleep()


def build_int8_engine(model_file, batch_size=32):
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_batch_size = batch_size
builder.max_workspace_size = common.GiB(1)

with open(model_file, 'rb') as model:
parser.parse(model.read(),)

return builder.build_cuda_engine(network)



if __name__ == '__main__':
rospy.init_node("listener", anonymous=True)
infer = ModelData()
infer.listener()

错误来自stream = cuda.Stream()中的以下类:
#!/usr/bin/env python
# Revision $Id$

from itertools import chain
import argparse
import os
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
import tensorrt as trt

# Simple helper data class that's a little nicer to use than a 2-tuple.
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
self.host = host_mem
self.device = device_mem


def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)

def __repr__(self):
return self.__str__()

# Allocates all buffers required for an engine, i.e. host/device inputs/outputs.
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
ctx.pop()
del ctx
return inputs, outputs, bindings, stream

# This function is generalized for multiple inputs/outputs.
# inputs and outputs are expected to be lists of HostDeviceMem objects.
def do_inference(context, bindings, inputs, outputs, batch_size=1):
# Transfer input data to the GPU.
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# [cuda.memcpy_htod(inp.device, inp.host) for inp in inputs]
# Run inference.
context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)
# context.execute(batch_size=batch_size, bindings=bindings)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# [cuda.memcpy_dtoh(out.host, out.device) for out in outputs]
# Synchronize the stream
stream.synchronize()
# Return only the host outputs.

return [out.host for out in outputs]

更多信息:

TensorRT: 6.1.5
Python: 2.7
rosversion: 1.14.3
rosdistro: melodic

最佳答案

您需要显式创建 Cuda 设备并在工作线程(即您的回调函数)中加载 Cuda 上下文,而不是使用 import pycuda.autoinit在主线程中,如下

import pycuda.driver as cuda
import threading

def callback():
cuda.init()
device = cuda.Device(0) # enter your Gpu id here
ctx = device.make_context()

allocate_buffers() # load Cuda buffers or any other Cuda or TenosrRT operations

ctx.pop() # very important


if __name__ == "__main__":
worker_thread = threading.Thread(target=callback())
worker_thread.start()
worker_thread.join()


注意:不要忘记删除 import pycuda.autoinit在两个模块中

这也在问题 here 中进行了讨论。

关于python-2.7 - 在 ROS 中运行 tensorRT 时得到 "LogicError: explicit_context_dependent failed: invalid device context - no currently active context? ",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60372729/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com