gpt4 book ai didi

pytorch - 使用 _ConvNd 对模块进行 Torchscripting

转载 作者:行者123 更新时间:2023-12-04 01:32:49 52 4
gpt4 key购买 nike

我正在使用 PyTorch 1.4,需要在 forward 中的循环内导出带有卷积的模型:

class MyCell(torch.nn.Module):
def __init__(self):
super(MyCell, self).__init__()

def forward(self, x):
for i in range(5):
conv = torch.nn.Conv1d(1, 1, 2*i+3)
x = torch.nn.Relu()(conv(x))
return x


torch.jit.script(MyCell())

这给出了以下错误:
RuntimeError: 
Arguments for call are not valid.
The following variants are available:

_single(float[1] x) -> (float[]):
Expected a value of type 'List[float]' for argument 'x' but instead found type 'Tensor'.

_single(int[1] x) -> (int[]):
Expected a value of type 'List[int]' for argument 'x' but instead found type 'Tensor'.

The original call is:
File "***/torch/nn/modules/conv.py", line 187
padding=0, dilation=1, groups=1,
bias=True, padding_mode='zeros'):
kernel_size = _single(kernel_size)
~~~~~~~ <--- HERE
stride = _single(stride)
padding = _single(padding)
'Conv1d.__init__' is being compiled since it was called from 'Conv1d'
File "***", line ***
def forward(self, x):
for _ in range(5):
conv = torch.nn.Conv1d(1, 1, 2*i+3)
~~~~~~~~~~~~~~~ <--- HERE
x = torch.nn.Relu()(conv(x))
return x
'Conv1d' is being compiled since it was called from 'MyCell.forward'
File "***", line ***
def forward(self, x, h):
for _ in range(5):
conv = torch.nn.Conv1d(1, 1, 2*i+3)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
x = torch.nn.Relu()(conv(x))
return x

我也尝试过预定义 conv '然后将它们放在 __init__ 内的列表中,但 TorchScript 不允许这样的类型:
class MyCell(torch.nn.Module):
def __init__(self):
super(MyCell, self).__init__()
self.conv = [torch.nn.Conv1d(1, 1, 2*i+3) for i in range(5)]

def forward(self, x):
for i in range(len(self.conv)):
x = torch.nn.Relu()(self.conv[i](x))
return x


torch.jit.script(MyCell())

这反而给出了:
RuntimeError: 
Module 'MyCell' has no attribute 'conv' (This attribute exists on the Python module, but we failed to convert Python type: 'list' to a TorchScript type.):
File "***", line ***
def forward(self, x):
for i in range(len(self.conv)):
~~~~~~~~~ <--- HERE
x = torch.nn.Relu()(self.conv[i](x))
return x

那么如何导出这个模块呢?背景:我正在导出 Mixed-scale Dense Networks (source)到 TorchScript;而 nn.Sequential可能适用于这种简化的情况,实际上我需要在每次迭代中与所有历史卷积输出进行卷积,这不仅仅是链接层。

最佳答案

作为 [ https://stackoverflow.com/users/6210807/kharshit] 的替代品建议,您可以定义网络功能方式:

class MyCell(torch.nn.Module):
def __init__(self):
super(MyCell, self).__init__()
self.w = []
for i in range(5):
self.w.append( torch.Tensor( 1, 1, 2*i+3 ) )
# init w[i] here, maybe make it "requires grad"

def forward(self, x):
for i in range(5):
x = torch.nn.functional.conv1d( x, self.w[i] )
x = torch.nn.functional.relu( x )
return x

关于pytorch - 使用 _ConvNd 对模块进行 Torchscripting,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60530703/

52 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com