- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个像这样的张量,其中值是频率,行是索引(0 到 6
):
tf_docs =
[[0, 2],
[1, 2],
[2, 1],
[5, 0],
[0, 1],
[7, 8],
[9, 6]]
我有一个常量张量,其中张量的值是索引:
tf_topics = tf.constant([[1 2]
[1 3]
[1 0]
[2 3]
[2 0]
[3 0]
[3 4]
[3 2]
[3 1]
[4 2]
[4 1]
[2 1]], shape=(12, 2), dtype=int32)
我需要在 tf_docs
中按行检查这些索引,结果矩阵将是 tf_docs
中不为零的列数(在两者中索引)。
例如,我们在 tf_topics
中有 [1 2]
。这意味着检查 tf_docs
中行索引 1
和 2
中的值。在 tf_docs
中,第一列和第二列的值都不为零。这就是为什么 [1 2]
的频率是 2
。
另一方面,[1,3]
得到 1
作为频率。因为索引 3
的第二列中的一个值为零。
所以结果将是这样的张量(这显然是对称的)。对角线将是每个 index
的频率之和:
[[2, 1, 1, 0, null],
[1, 3, 2, 1, 1 ],
[1, 2, 3, 1, 1 ],
[0, 1, 1, 5, 0 ],
[null,1, 1, 0, 1 ]]
到目前为止我做了什么:
我决定对这两个矩阵使用 tf.gather
和 tf.count_nonzero
。因为我想在 topics
中拆分 index
并查看这些 indexes
是否在 tf_docs
/中共同出现p>
tf.math.count_nonzero(tf.gather(tf_docs, tf_topics, axis=0), axis=1)
不过,这似乎并没有给我想要的结果。
最佳答案
让 nonzero_tf_docs
定义为:
zero_tf_docs = tf.cast(tf.equal(tf_docs, tf.zeros_like(tf_docs)), tf.int32)
nonzero_tf_docs = 1 - tf.reduce_max(zero_tf_docs, axis=-1)
OP 要求为 tf_topics
中的每对索引 i, j
计算总和 nonzero_tf_docs[i] + nonzero_tf_docs[j]
> 并将结果显示在矩阵中。这可以通过以下方式实现:
def compute_result(tf_topics_, nonzero_tf_docs, tf_docs):
# Find matrix lower part
values = tf.reduce_sum(tf.gather(nonzero_tf_docs, tf_topics_), axis=-1)
max_index = tf.reduce_max(tf_topics) + 1
out_sparse = tf.sparse.SparseTensor(indices=tf_topics_, values=values, dense_shape=[max_index, max_index])
out_sparse = tf.cast(out_sparse, dtype=tf.int32)
out_sparse = tf.sparse.reorder(out_sparse)
out_dense = tf.sparse.to_dense(out_sparse, default_value=-1)
out_lower = tf.matrix_band_part(out_dense, -1, 0)
# Compute diagonal
diag_values = tf.reduce_sum(tf_docs, axis=-1)
diag = tf.slice(diag_values,
begin=[0],
size=[max_index])
# Construct output matrix
out = out_lower + tf.transpose(out_lower)
mask = tf.eye(max_index, dtype=tf.int32)
out = (1 - mask) * out + mask * diag
return out
# Find docs without zeros
zero_tf_docs = tf.cast(tf.equal(tf_docs, tf.zeros_like(tf_docs)), tf.int32)
nonzero_tf_docs = 1 - tf.reduce_max(zero_tf_docs, axis=-1)
# Transform counts into matrix format
tf_topics = tf.cast(tf_topics, dtype=tf.int64)
tf_topics_reversed = tf.reverse(tf_topics, [-1])
tf_topics_ = tf_topics_reversed
out_1 = compute_result(tf_topics_, nonzero_tf_docs, tf_docs)
out_2 = compute_result(tf_topics, nonzero_tf_docs, tf_docs)
out = tf.maximum(out_1, out_2)
with tf.Session() as sess:
r = sess.run(out)
print(r) # prints [[ 2 1 1 0 -1]
# [ 1 3 2 1 1]
# [ 1 2 3 1 1]
# [ 0 1 1 5 0]
# [-1 1 1 0 1]]
关于python - 如何在 tensorflow 中用两个张量创建一个频率张量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60711079/
我想矢量化以下代码: def style_noise(self, y, style): n = torch.randn(y.shape) for i in range(n.shape[
对于给定的二维张量,我想检索值为 1 的所有索引。我希望能够简单地使用 torch.nonzero(a == 1).squeeze(),它将返回张量([1, 3, 2])。但是,torch.nonze
如果 x 是 dtype torch.float 的 torch.Tensor 那么操作 x.item() 和 float(x)完全一样? 最佳答案 操作x.item() 和float(x) 是不一样
我正在尝试提取 n 点 3D 坐标和 b 批处理中的特定行。本质上,我的张量 T1 的形状为 b*n*3。我有另一个形状为 b * n 的 bool 张量 T2,指示需要获取 n 的哪些行。本质上我的
以下代码掩码很好 mask = targets >= 0 targets = targets[mask] 但是,当我尝试使用两个条件进行屏蔽时,它会给出 RuntimeError: Boolean v
我正在定义一个简单的 conv2d 函数来计算输入和内核(均为 2D 张量)之间的互相关,如下所示: import torch def conv2D(X, K): h = K.shape[0]
作为训练 CNN 的一部分,我正在使用数组 inputs包含 对象。我想轮换一个人一些随机度数的对象 x ,如下所示: def rotate(inputs, x): # Rotate inpu
我有一个索引列表和一个具有形状的张量: shape = [batch_size, d_0, d_1, ..., d_k] idx = [i_0, i_1, ..., i_k] 有没有办法用索引 i_0
假设我有张量 t = torch.tensor([1,2,3,4,5]) 我想使用相同大小的索引张量来拆分它,该张量告诉我每个元素应该进行哪个拆分。 indices = torch.tensor([0
我尝试从生成器构建一个张量,如下所示: >>> torch.tensor(i**2 for i in range(10)) Traceback (most recent call last): F
假设我有一个一维 PyTorch 张量 end_index长度为L。 我想构造一个 2D PyTorch 张量 T有 L 行,其中 T[i,j] = 2什么时候j < end_index[i]和 T[
我在 pytorch 中有一个张量 x 比方说形状 (5,3,2,6) 和另一个形状 (5,3,2,1) 的张量 idx,其中包含第一个张量中每个元素的索引。我想用第二个张量的索引对第一个张量进行切片
我有以下火炬张量: tensor([[-0.2, 0.3], [-0.5, 0.1], [-0.4, 0.2]]) 以及以下 numpy 数组:(如有必要,我可以将其转换为其他内
tf.data.Dataset的构造函数接受一个参数 variant_tensor ,这只是 documented as : A DT_VARIANT tensor that represents t
我有: inp = torch.randn(4, 1040, 161) 我还有另一个名为 indices 的张量值: tensor([[124, 583, 158, 529], [1
我有一个张量 inps ,其大小为 [64, 161, 1]我有一些新数据d大小为 [64, 161] .如何添加 d至inps这样新的大小是[64, 161, 2] ? 最佳答案 使用 .unsqu
我有张量 t = torch.tensor([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) 和一个查询张量 q = torch.te
给定一个 3d 张量,说:batch x sentence length x embedding dim a = torch.rand((10, 1000, 96)) 以及每个句子的实际长度数组(或张
我想使用 [int, -1] 符号 reshape 张量(例如,压平图像)。但我事先并不知道第一个维度。一个用例是在大批量上进行训练,然后在较小的批量上进行评估。 为什么会出现以下错误:获取包含“_M
我有两个 torch 张量。一个形状为 [64, 4, 300],一个形状为 [64, 300]。我如何连接这两个张量以获得形状为 [64, 5, 300] 的合成张量。我知道用于此的 tensor.
我是一名优秀的程序员,十分优秀!