- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
使用此代码生成相关表:
df1.drop(['BC DataPlus', 'AC Glossary'], axis=1).corr(method='pearson').style.format("{:.2}").background_gradient(cmap=plt.get_cmap('coolwarm'), axis=1)
最佳答案
如果从字面上看,您提出的问题很难回答。
难点在于df.style.render()
生成 HTML,然后将其发送到浏览器以呈现为图像。结果在所有浏览器中也可能不完全相同。
Python 不直接参与图像的生成。所以没有
直接的基于 Python 的解决方案。
然而,如何将 HTML 转换为 png 的问题
was raised关于 Pandas 开发者的
github页面和建议
答案是 use phantomjs
.其他方式(我没有测试过)可能是使用
webkit2png
或者
GrabzIt .
然而,如果我们放松对问题的解释,我们就可以避免大部分困难。而不是试图产生由 df.style
生成的精确图像(对于特定浏览器),
我们可以很容易地使用 seaborn 生成类似的图像:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.random((6, 4)), columns=list('ABCD'))
fig, ax = plt.subplots()
sns.heatmap(df.corr(method='pearson'), annot=True, fmt='.4f',
cmap=plt.get_cmap('coolwarm'), cbar=False, ax=ax)
ax.set_yticklabels(ax.get_yticklabels(), rotation="horizontal")
plt.savefig('result.png', bbox_inches='tight', pad_inches=0.0)
import colorsys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.random((6, 4)), columns=list('ABCD'))
corr = df.corr(method='pearson')
fig, ax = plt.subplots()
data = corr.values
heatmap = ax.pcolor(data, cmap=plt.get_cmap('coolwarm'),
vmin=np.nanmin(data), vmax=np.nanmax(data))
ax.set_xticks(np.arange(data.shape[1])+0.5, minor=False)
ax.set_yticks(np.arange(data.shape[0])+0.5, minor=False)
ax.invert_yaxis()
row_labels = corr.index
column_labels = corr.columns
ax.set_xticklabels(row_labels, minor=False)
ax.set_yticklabels(column_labels, minor=False)
def _annotate_heatmap(ax, mesh):
"""
**Taken from seaborn/matrix.py**
Add textual labels with the value in each cell.
"""
mesh.update_scalarmappable()
xpos, ypos = np.meshgrid(ax.get_xticks(), ax.get_yticks())
for x, y, val, color in zip(xpos.flat, ypos.flat,
mesh.get_array(), mesh.get_facecolors()):
if val is not np.ma.masked:
_, l, _ = colorsys.rgb_to_hls(*color[:3])
text_color = ".15" if l > .5 else "w"
val = ("{:.3f}").format(val)
text_kwargs = dict(color=text_color, ha="center", va="center")
# text_kwargs.update(self.annot_kws)
ax.text(x, y, val, **text_kwargs)
_annotate_heatmap(ax, heatmap)
plt.savefig('result.png', bbox_inches='tight', pad_inches=0.0)
关于python - 需要将pandas相关高亮表(cmap Matplotlib)保存为png图像,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51347398/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!