gpt4 book ai didi

model - 路径分析 : CFI = 1, RMSEA = 0

转载 作者:行者123 更新时间:2023-12-04 01:31:12 27 4
gpt4 key购买 nike

我正在运行路径分析模型,但似乎 模型拟合指数完美 :CFI = 1.00,RMSEA = 0.00。然而,完美的模型拟合通常表明模型饱和。不过好像我的型号是不是 因为我有额外的自由度。那么,如何解释CFI和RMSEA呢?非常感谢你的帮助!

lavaan (0.5-21) converged normally after  39 iterations

Number of observations 109

Number of missing patterns 6

Estimator ML
Minimum Function Test Statistic 6.199
Degrees of freedom 11
P-value (Chi-square) 0.860

Model test baseline model:

Minimum Function Test Statistic 150.084
Degrees of freedom 20
P-value 0.000

User model versus baseline model:

Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.067

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -1000.419
Loglikelihood unrestricted model (H1) -997.320

Number of free parameters 19
Akaike (AIC) 2038.838
Bayesian (BIC) 2089.974
Sample-size adjusted Bayesian (BIC) 2029.936

Root Mean Square Error of Approximation:

RMSEA 0.000
90 Percent Confidence Interval 0.000 0.054
P-value RMSEA <= 0.05 0.941

Standardized Root Mean Square Residual:

SRMR 0.052

Parameter Estimates:

Information Observed
Standard Errors Standard

Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
SelfEsteem ~
EnglishNam (a) -0.382 0.184 -2.073 0.038 -0.382 -0.200
Well_Being ~
SelfEsteem (b) 0.668 0.095 6.998 0.000 0.668 0.558
EnglishName ~
RmmbrChnsN -0.057 0.035 -1.623 0.105 -0.057 -0.204
PrnncChnsN -0.064 0.032 -1.981 0.048 -0.064 -0.249
MentalHealth ~
SelfEsteem (c) 0.779 0.088 8.846 0.000 0.779 0.656
GeneralPhysicalHealth ~
SelfEsteem (d) 0.335 0.099 3.368 0.001 0.335 0.314

Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Well_Being ~~
.MentalHealth 0.085 0.079 1.076 0.282 0.085 0.105
.GnrlPhysclHlth 0.196 0.091 2.153 0.031 0.196 0.214
.MentalHealth ~~
.GnrlPhysclHlth 0.191 0.083 2.308 0.021 0.191 0.233

Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SelfEsteem 5.605 0.126 44.424 0.000 5.605 5.880
.Well_Being 0.860 0.525 1.638 0.101 0.860 0.754
.EnglishName 1.014 0.132 7.701 0.000 1.014 2.031
.MentalHealth 0.708 0.485 1.460 0.144 0.708 0.626
.GnrlPhysclHlth 3.756 0.548 6.854 0.000 3.756 3.700

Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SelfEsteem 0.872 0.119 7.356 0.000 0.872 0.960
.Well_Being 0.896 0.122 7.329 0.000 0.896 0.689
.EnglishName 0.206 0.029 7.127 0.000 0.206 0.826
.MentalHealth 0.728 0.101 7.201 0.000 0.728 0.569
.GnrlPhysclHlth 0.929 0.129 7.211 0.000 0.929 0.901

最佳答案

我在网上某处读到,当卡方贡献小于模型的任何给定步骤的自由度时存在建模问题(即,用于测试配置不变性的基线拟合或将度量模型与配置模型进行比较的步骤等)我以前从未遇到过这个问题,我也不太明白。但是,总体而言,所有具有相应“完美拟合”的模型似乎都是这种情况。

关于model - 路径分析 : CFI = 1, RMSEA = 0,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45291102/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com