- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有两个数据框:
df_melt
:
MatchID GameWeek Date Team Home AgainstTeam
0 46605 1 2019-08-09 Liverpool Home Norwich City
1 46605 1 2019-08-09 Norwich City Away Liverpool
2 46606 1 2019-08-10 AFC Bournemouth Home Sheffield United
3 46606 1 2019-08-10 Sheffield United Away AFC Bournemouth
4 46607 1 2019-08-10 Burnley Home Southampton
.. ... ... ... ... ... ...
533 46871 27 2020-02-23 Watford Away Manchester United
534 46872 27 2020-02-22 Sheffield United Home Brighton and Hove Albion
535 46872 27 2020-02-22 Brighton and Hove Albion Away Sheffield United
536 46873 27 2020-02-22 Southampton Home Aston Villa
537 46873 27 2020-02-22 Aston Villa Away Southampton
并且,对于玩家匹配,df_pm
:
Player GameWeek Minutes ... CloseShotCreated TotalShotCreated HeadersCreated
PlayerMatchesDetailID ...
1 Alisson 1 90 ... 0 0 0
2 Virgil van Dijk 1 90 ... 0 0 0
3 Joseph Gomez 1 90 ... 0 1 0
4 Andrew Robertson 1 90 ... 0 1 0
5 Trent Alexander-Arnold 1 90 ... 3 3 1
... ... ... ... ... ... ... ...
15053 Matty James 22 0 ... 0 0 0
15054 Matty James 23 0 ... 0 0 0
15055 Matty James 24 0 ... 0 0 0
15056 Matty James 25 0 ... 0 0 0
15057 Matty James 26 0 ... 0 0 0
现在,我尝试遍历 df_pm
并根据 df_melt
的某些条件查找项目,如下所示:
#Instantiate an empty list
match_ids = []
home_away = []
dates = []
#For each row in the player matches dataframe...
for row in df_pm.itertuples():
#Look up the match id from the team matches dataframe
team = row.ForTeam
againstteam = row.AgainstTeam
gameweek = row.GameWeek
match_id = df_melt.loc[(df_melt['GameWeek']==gameweek)
&(df_melt['Team']==team)
&(df_melt['AgainstTeam']==againstteam),
'MatchID'].item()
date = df_melt.loc[(df_melt['GameWeek']==gameweek)
&(df_melt['Team']==team)
&(df_melt['AgainstTeam']==againstteam),
'Date'].item()
home = df_melt.loc[(df_melt['GameWeek']==gameweek)
&(df_melt['Team']==team)
&(df_melt['AgainstTeam']==againstteam),
'Home'].item()
#Add it to the list
match_ids.append(match_id)
home_away.append(home)
dates.append(date)
但是对于所有迭代,即使我打印“team”、againstteam”和“gameweek”,我也会收到以下错误:
Traceback (most recent call last):
File "tableau_data_generation.py", line 155, in <module>
'MatchID'].item()
File "/Users/me/anaconda2/envs/data_science/lib/python3.7/site-packages/pandas/core/base.py", line 652, in item
return self.values.item()
ValueError: can only convert an array of size 1 to a Python scalar
...表明该项目不存在。
但是当我打印完整的数据帧 df_melt
时,就像这样:
with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also
print(df_melt, df_melt.shape)
我得到 (538, 6)
并且可以看到所有数据都在那里,没有任何缺陷。
当我检查类型时,我看到:
df_melt
:
MatchID object
GameWeek object
Date object
Team object
Home object
AgainstTeam object
df_pm
:
Player object
GameWeek int64
Minutes int64
ForTeam object
AgainstTeam object
Goals int64
ShotsOnTarget int64
ShotsInBox int64
CloseShots int64
TotalShots int64
Headers int64
GoalAssists int64
ShotOnTargetCreated int64
ShotInBoxCreated int64
CloseShotCreated int64
TotalShotCreated int64
HeadersCreated int64
所以这里存在类型不匹配。
如果我在执行迭代之前添加以下代码行:
df_melt['GameWeek'] = pd.to_numeric(df_melt['GameWeek'])
我在 df_pm.itertuples()
的第一行成功地打印了几十个“match_id”、“date”和“home”(在我添加该行之前没有打印),只是在第二行再次中断并出现相同的错误:
ValueError: can only convert an array of size 1 to a Python scalar
我该如何解决这个问题?
注意:这是上面代码之后的内容。
def matchid_lookup(player, date, team, gameweek):
try:
try:
return df_pm.loc[(df_pm['Date']==date)
&(df_pm['Player']==player), 'MatchID'].item()
except:
return df_pm.loc[(df_pm['Date']==date)
&(df_pm['ForTeam']==team), 'MatchID'].iloc[0]
except:
return df_pm.loc[(df_pm['GameWeek']==gameweek)
&(df_pm['Player']==player), 'MatchID'].item()
#Declare the list as a column in the player matches df
df_pm['MatchID']=match_ids
df_pm['Date']=pd.to_datetime(dates)
df_pm['Home']=home_away
df_pm['Position']=df_pm['Player'].map(pos_lookup)
#Get the match IDs column first in the dataframe
cols = list(df_pm.columns)
new_cols = ['MatchID', 'Date', 'Home','Position'] + cols[:-4]
df_pm = df_pm[new_cols]
#Bring in stats from api table
#First, get key identifiers into the api table to facilitate joining
df_api_stats['Player'] = df_api_stats['PlayerID'].map(player_lookup)
df_api_stats['Team'] = df_api_stats['PlayerID'].map(team_lookup)
df_api_stats['MatchID'] = df_api_stats.apply(lambda x: matchid_lookup(x['Player'],
x['Date'],
x['Team'],
x['GameWeek']), axis=1)
api_cols = ['Player', 'MatchID', 'BPS', 'MinutesPlayed',
'CleanSheet', 'Saves', 'NetTransfersIn',
'SelectedBy', 'Points', 'Price']
df_api_cols = df_api_stats[api_cols]
最佳答案
因此 df_api_stats
中有一些 Date 不在 df_pm
中,您可以通过以下方式查看:
print (set(pd.to_datetime(df_api_stats['Date'])) - set(pd.to_datetime(df_pm['Date'])))
{Timestamp('2020-01-29 00:00:00'),
Timestamp('2020-02-28 00:00:00'),
Timestamp('2020-02-29 00:00:00'),
Timestamp('2020-03-01 00:00:00'),
Timestamp('2020-03-07 00:00:00'),
Timestamp('2020-03-08 00:00:00'),
Timestamp('2020-03-09 00:00:00')}
我不确定您想如何处理缺失值,但为了避免方法失败,您可以添加一个 except 并在所有可能性都不匹配时返回 nan。
def matchid_lookup(player, date, team, gameweek):
try:
try:
return df_pm.loc[(df_pm['Date']==date)
&(df_pm['Player']==player), 'MatchID'].item()
except:
return df_pm.loc[(df_pm['Date']==date)
&(df_pm['ForTeam']==team), 'MatchID'].iloc[0]
except:
try:
return df_pm.loc[(df_pm['GameWeek']==gameweek)
&(df_pm['Player']==player), 'MatchID'].item()
except:
return np.nan
注意:就在之前导致问题的 for
循环之前,不要忘记执行此操作:
df_melt['GameWeek'] = pd.to_numeric(df_melt['GameWeek'])
df_melt[['Team', 'AgainstTeam']] = df_melt[['Team', 'AgainstTeam']]\
.replace('AFC Bournemouth', 'Bournemouth')
关于python - Pandas - 只能将大小为 1 的数组转换为 Python 标量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61705173/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!