gpt4 book ai didi

nlp - 微调 DistilBertForSequenceClassification : Is not learning, 为什么损失没有改变?权重没有更新?

转载 作者:行者123 更新时间:2023-12-04 01:16:49 55 4
gpt4 key购买 nike

我对 PyTorch 和 Huggingface-transformers 比较陌生,并在此 Kaggle-Dataset 上试验过 DistillBertForSequenceClassification .

from transformers import DistilBertForSequenceClassification
import torch.optim as optim
import torch.nn as nn
from transformers import get_linear_schedule_with_warmup

n_epochs = 5 # or whatever
batch_size = 32 # or whatever

bert_distil = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
#bert_distil.classifier = nn.Sequential(nn.Linear(in_features=768, out_features=1), nn.Sigmoid())
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(bert_distil.parameters(), lr=0.1)

X_train = []
Y_train = []

for row in train_df.iterrows():
seq = tokenizer.encode(preprocess_text(row[1]['text']), add_special_tokens=True, pad_to_max_length=True)
X_train.append(torch.tensor(seq).unsqueeze(0))
Y_train.append(torch.tensor([row[1]['target']]).unsqueeze(0))
X_train = torch.cat(X_train)
Y_train = torch.cat(Y_train)

running_loss = 0.0
bert_distil.cuda()
bert_distil.train(True)
for epoch in range(n_epochs):
permutation = torch.randperm(len(X_train))
j = 0
for i in range(0,len(X_train), batch_size):
optimizer.zero_grad()
indices = permutation[i:i+batch_size]
batch_x, batch_y = X_train[indices], Y_train[indices]
batch_x.cuda()
batch_y.cuda()
outputs = bert_distil.forward(batch_x.cuda())
loss = criterion(outputs[0],batch_y.squeeze().cuda())
loss.requires_grad = True

loss.backward()
optimizer.step()

running_loss += loss.item()
j+=1
if j == 20:
#print(outputs[0])
print('[%d, %5d] running loss: %.3f loss: %.3f ' %
(epoch + 1, i*1, running_loss / 20, loss.item()))
running_loss = 0.0
j = 0

[1, 608] running loss: 0.689 loss: 0.687[1, 1248] running loss: 0.693 loss: 0.694[1, 1888] running loss: 0.693 loss: 0.683[1, 2528] running loss: 0.689 loss: 0.701[1, 3168] running loss: 0.690 loss: 0.684[1, 3808] running loss: 0.689 loss: 0.688[1, 4448] running loss: 0.689 loss: 0.692 etc...

无论我尝试什么,损失都没有减少,甚至没有增加,预测也没有变得更好。在我看来,我忘记了一些东西,以至于权重实际上没有更新。有人有想法吗?啊

我尝试过的

  • 不同的损失函数
    • 公元前
    • 交叉熵
    • 甚至 MSE 损失
  • One-Hot 编码与单个神经元输出
  • 不同的学习率和优化器
  • 我什至将所有目标更改为只有一个标签,但即便如此,网络也没有收敛。

最佳答案

查看运行损失和小批量损失很容易产生误导。您应该查看时期损失,因为每次损失的输入都是相同的。

此外,您的代码中存在一些问题,修复了所有问题并且行为符合预期:损失在每个 epoch 后缓慢下降,并且它也可能过拟合到一个小的 minibatch。请看代码,变化包括:使用model(x)代替model.forward(x)cuda()只调用一次, 较小的学习率等。

调整和微调 ML 模型是一项艰巨的工作。

n_epochs = 5
batch_size = 1

bert_distil = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(bert_distil.parameters(), lr=1e-3)

X_train = []
Y_train = []
for row in train_df.iterrows():
seq = tokenizer.encode(row[1]['text'], add_special_tokens=True, pad_to_max_length=True)[:100]
X_train.append(torch.tensor(seq).unsqueeze(0))
Y_train.append(torch.tensor([row[1]['target']]))
X_train = torch.cat(X_train)
Y_train = torch.cat(Y_train)

running_loss = 0.0
bert_distil.cuda()
bert_distil.train(True)
for epoch in range(n_epochs):
permutation = torch.randperm(len(X_train))
for i in range(0,len(X_train), batch_size):
optimizer.zero_grad()
indices = permutation[i:i+batch_size]
batch_x, batch_y = X_train[indices].cuda(), Y_train[indices].cuda()
outputs = bert_distil(batch_x)
loss = criterion(outputs[0], batch_y)
loss.backward()
optimizer.step()

running_loss += loss.item()

print('[%d] epoch loss: %.3f' %
(epoch + 1, running_loss / len(X_train) * batch_size))
running_loss = 0.0

输出:

[1] epoch loss: 0.695
[2] epoch loss: 0.690
[3] epoch loss: 0.687
[4] epoch loss: 0.685
[5] epoch loss: 0.684

关于nlp - 微调 DistilBertForSequenceClassification : Is not learning, 为什么损失没有改变?权重没有更新?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63218778/

55 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com