gpt4 book ai didi

python - Tensorflow InvalidArgumentError : 2 root error(s) found. 索引 [28,0] = 11292 不在 [0, 11272)

转载 作者:行者123 更新时间:2023-12-04 01:13:01 26 4
gpt4 key购买 nike

我已经使用 Keras Sequential API 创建了一个模型,并使用了 Glove pretraining embeddings

def create_model(
input_length=20,
output_length=20):

encoder_input = tf.keras.Input(shape=(input_length,))
decoder_input = tf.keras.Input(shape=(output_length,))

encoder = tf.keras.layers.Embedding(original_embedding_matrix.shape[0], original_embedding_dim, weights=[original_embedding_matrix], mask_zero=True)(encoder_input)
encoder, h_encoder, u_encoder = tf.keras.layers.LSTM(64, return_state=True)(encoder)

decoder = tf.keras.layers.Embedding(clone_embedding_matrix.shape[0], clone_embedding_dim, weights=[clone_embedding_matrix], mask_zero=True)(decoder_input)
decoder = tf.keras.layers.LSTM(64, return_sequences=True)(decoder, initial_state=[h_encoder, u_encoder])
decoder = tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(clone_vocab_size+1))(decoder)

model = tf.keras.Model(inputs=[encoder_input, decoder_input], outputs=[decoder])
model.compile(optimizer='adam', loss=tf.keras.losses.MeanSquaredError(), metrics=['accuracy'])

return model

model = create_model()
这是我的编码器/解码器形状:
training_encoder_input.shape --> (2500, 20) 
training_decoder_input.shape --> (2500, 20)
training_decoder_output.shape ---> (2500, 20, 11272)
clone_vocab_size ---> 11271
model.summary() 的输出:
Model: "functional_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 20)] 0
__________________________________________________________________________________________________
input_2 (InputLayer) [(None, 20)] 0
__________________________________________________________________________________________________
embedding (Embedding) (None, 20, 50) 564800 input_1[0][0]
__________________________________________________________________________________________________
embedding_1 (Embedding) (None, 20, 50) 563600 input_2[0][0]
__________________________________________________________________________________________________
lstm (LSTM) [(None, 64), (None, 29440 embedding[0][0]
__________________________________________________________________________________________________
lstm_1 (LSTM) (None, 20, 64) 29440 embedding_1[0][0]
lstm[0][1]
lstm[0][2]
__________________________________________________________________________________________________
time_distributed (TimeDistribut (None, 20, 11272) 732680 lstm_1[0][0]
==================================================================================================
Total params: 1,919,960
Trainable params: 1,919,960
Non-trainable params: 0
__________________________________________________________________________________________________
但是当我尝试训练模型时:
model.fit(x=[training_encoder_input, training_decoder_input],
y=training_decoder_output,
verbose=2,
batch_size=128,
epochs=10)
我收到此错误:
InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: indices[28,0] = 11292 is not in [0, 11272)
[[node functional_1/embedding_1/embedding_lookup (defined at <ipython-input-11-967d0351a90e>:31) ]]
(1) Invalid argument: indices[28,0] = 11292 is not in [0, 11272)
[[node functional_1/embedding_1/embedding_lookup (defined at <ipython-input-11-967d0351a90e>:31) ]]
[[broadcast_weights_1/assert_broadcastable/AssertGuard/else/_13/broadcast_weights_1/assert_broadcastable/AssertGuard/Assert/data_7/_78]]
0 successful operations.
0 derived errors ignored. [Op:__inference_train_function_13975]

Errors may have originated from an input operation.
Input Source operations connected to node functional_1/embedding_1/embedding_lookup:
functional_1/embedding_1/embedding_lookup/8859 (defined at /usr/lib/python3.6/contextlib.py:81)

Input Source operations connected to node functional_1/embedding_1/embedding_lookup:
functional_1/embedding_1/embedding_lookup/8859 (defined at /usr/lib/python3.6/contextlib.py:81)

Function call stack:
train_function -> train_function
已经有人问了 this question但是没有一个响应对我有用,可能错误在损失函数内或在嵌入层的词汇表内,但我无法弄清楚到底是什么问题。

最佳答案

解决方案其实很简单,在错误中:

(0) Invalid argument:  indices[28,0] = 11292 is not in [0, 11272)
  • 11292是一个输入元素(映射到我的 Tokenizer 字典中的一个词)
  • 11272是我词汇的长度

  • 为什么我有一个带数字的词 11292如果我的标记器的长度只是 11272 ?
  • 我有两个标记器,一个用于输入,另一个用于输出,因此解决方案是采用较小的 ans 的长度在模型中使用它。

  • 您还可以限制在 Tensorflow 中的分词器中使用的单词数:
    tokenizer = Tokenizer(num_words=20000)
    它将取 20000 个重复最多的单词。

    关于python - Tensorflow InvalidArgumentError : 2 root error(s) found. 索引 [28,0] = 11292 不在 [0, 11272),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64241645/

    26 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com