gpt4 book ai didi

python - 如果我们使用管道,我怎样才能得到树解释器的树贡献?

转载 作者:行者123 更新时间:2023-12-04 01:10:22 26 4
gpt4 key购买 nike

我正在使用 sklearns 的管道 功能,一次热编码,以及模型。几乎与 this 中的一样发布。

使用Pipeline 后,我无法再获得树贡献。收到此错误:

AttributeError: 'Pipeline' object has no attribute 'n_outputs_'

我尝试使用 treeinterpreter 的参数,但我卡住了。

因此我的问题是:当我们使用 sklearns Pipeline 时,有什么方法可以从树中获取贡献?

编辑 2 - Venkatachalam 要求的真实数据:

# Data DF to train model
df = pd.DataFrame(
[['SGOHC', 'd', 'onetwothree', 'BAN', 488.0580347, 960 ,841, 82, 0.902497027, 841 ,0.548155625 ,0.001078211, 0.123958333 ,1],
['ABCDEFGHIJK', 'SOC' ,'CON','CAN', 680.84, 1638, 0, 0, 0 ,0 ,3.011140743 ,0.007244358, 1 ,0],
['Hello', 'AA', 'onetwothree', 'SPEAKER', 5823.230967, 2633, 1494 ,338 ,0.773761714 ,1494, 12.70144386 ,0.005743015, 0.432586403, 8]],
columns=['B','C','D','E','F','G','H','I','J','K','L','M', 'N', 'target'])

# Create test and train set (useless, but for the example...)
from sklearn.model_selection import train_test_split

# Define X and y
X = df.drop('target', axis=1)
y = df['target']

# Create Train and Test Sets
X_train, X_validation, Y_train, Y_validation = train_test_split(X, y, test_size=0.20, random_state=1)


# Make the pipeline and model
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import OneHotEncoder
import numpy as np
import pandas as pd
from sklearn import set_config
from sklearn.model_selection import ParameterGrid
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt

rfr = Pipeline([('preprocess',
ColumnTransformer([('ohe',
OneHotEncoder(handle_unknown='ignore'), [1])])),
('rf', RandomForestRegressor())])

rfr.fit(X_train, Y_train)


# The New, Real data that we need to predict & explain!

new_data = pd.DataFrame(
[['DEBTYIPL', 'de', 'onetwothreefour', 'BANAAN', 4848.0580347, 923460 ,823441, 5, 0.902497027, 43 ,0.548155625 ,0.001078211, 0.123958333 ],
['ABCDEFGHIJK', 'SOC' ,'CON','CAN23', 680.84, 1638, 0, 0, 0 ,0 ,1.011140743 ,4.007244358, 1 ],
['Hello_NO', 'AAAAa', 'onetwothree', 'SPEAKER', 5823.230967, 123, 32 ,22 ,0.773761714 ,1678, 12.70144386 ,0.005743015, 0.432586403]],
columns=['B','C','D','E','F','G','H','I','J','K','L','M', 'N'])
new_data.head()

# Predicting the values
rfr.predict(new_data)

# Now the error... the contributions:
from treeinterpreter import treeinterpreter as ti
prediction, bias, contributions = ti.predict(rfr[-1], rfr[:-1].fit_transform(new_data))

#ValueError: Number of features of the model must match the input. Model n_features is 2 and input n_features is 3

最佳答案

您可以通过索引管道对象 model[-1] 来获得最终的估算器。类似地,我们通过 model[:-1] 获得一个新的管道(以捕获所有转换步骤)排除分类器。

因此,这就是您需要做的!

prediction, bias, contributions = ti.predict(model[-1], model[:-1].transform(df))

关于python - 如果我们使用管道,我怎样才能得到树解释器的树贡献?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65040249/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com