- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我很难理解为什么 GPU 和 CPU 速度与小型网络相似(CPU 有时更快),而 GPU 与大型网络的速度更快。问题底部的代码在 i7-6700k 上运行时间为 103.7 秒,但使用 tensorflow-gpu 时,代码运行时间为 29.5 秒。
然而,当我训练一个有 100 个隐藏神经元的网络时,而不是像下面的例子中的 1000 个,我在使用 GPU 时获得了大约 20 秒,在使用 CPU 时获得了大约 15 秒。
我在另一个堆栈溢出答案中读到 CPU->GPU 传输需要很长时间,我假设这是引用在 GPU 上加载数据示例。
有人可以解释为什么会发生这种情况,并可能引用我可以对代码进行的一些更改以最大限度地提高速度吗?
import numpy as np
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.utils import np_utils
from keras.layers.core import Dense, Activation, Flatten, Dropout
from sklearn.preprocessing import normalize
## Importing the MNIST dataset using Keras
from keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# reshape for vector input
N, x, y = X_train.shape
X_train = normalize(np.reshape(X_train, (N, x * y)))
N, x, y = X_test.shape
X_test = normalize(np.reshape(X_test, (N, x * y)))
# one-hot encoding
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
model = Sequential()
model.add(Dense(output_dim=750, input_dim=784))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(150))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(50))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(50))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='Nadam', metrics=['accuracy'])
fit = model.fit(X_train, y_train, batch_size=128, nb_epoch=10, verbose=0)
## Printing the accuracy of our model, according to the loss function specified in model.compile above
score = model.evaluate(X_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
最佳答案
在小型网络的情况下,批量加载可能是这里的罪魁祸首。
Keras 在每次迭代开始时将每个 minibatch 从 RAM 加载到 GPU,从而在小型网络中造成瓶颈(前向/后向计算非常快)。
您可以尝试使用 model.fit_generator
而不是普通 fit
,以便加载小批量的 CPU 线程并行工作。
不幸的是,我不知道在 GPU 上为 Keras 预加载整个数据集(参见 my issue)
如果您使用的是 Tensorflow 后端,则可以使用 Google 时间线分析工具查看导致速度变慢的原因。如需引用,请参阅 this issue
关于performance - 训练某些网络时,Keras(Tensorflow 后端)在 GPU 上比在 CPU 上慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42097115/
我想知道在谈到 CPU 使用率和 CPU 利用率时,术语是否存在科学差异。我觉得这两个词都被用作同义词。它们都描述了 CPU 时间和 CPU 容量之间的关系。 Wikipedia称之为 CPU 使用率
我研究了一些关于处理器和 Tomasulo 算法的指令重新排序的内容。 为了更深入地了解这个主题,我想知道是否有任何方法可以(获取跟踪)查看为给定程序完成的实际动态重新排序? 我想给出一个输入程序并查
我有一台配备 2 个 Intel Xeon CPU E5-2620 (Sandy Bridge) 和 10Gbps 82599 NIC(2 个端口)的服务器,用于高性能计算。从 PCI 关联性中,我看
您能详细解释一下“用户 CPU 时间”和“系统 CPU 时间”吗?我读了很多,但我不太理解。 最佳答案 区别在于时间花在用户空间还是内核空间。用户 CPU 时间是处理器运行程序代码(或库中的代码)所花
我想知道如何识别 CPU 是否与 ARM v5 指令集兼容。 假设 ARM v7 指令与 ARM v5 兼容是否正确? 最佳答案 您可以阅读 CPUID base register获得PARTNO。然
我目前在具有多个六核 CPU 的服务器上使用 C 多线程。我想将我的一些线程的亲和性设置为单个 CPU 的各个核心。我使用过 pthread_setaffinity_np() 和 sched_seta
1) 独占时间是在方法中花费的时间2) 包含时间是在方法中花费的时间加上在任何被调用函数中花费的时间3)我们称调用方法为“ parent ”,称方法为“子”。引用链接:Click here 这里的问题
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 5 年前。 Improve this ques
好的,所以编译器可以出于性能原因自由地重新排序代码片段。让我们假设一些代码片段,在没有应用优化的情况下直接翻译成机器代码,看起来像这样: machine_instruction_1 machine_i
我在 zabbix 中有以下默认图表,但我不知道如何解释这些值。谁能解释一下? 最佳答案 操作系统是一件非常忙碌的事情,尤其是当你让它做某事时(即使你没有做)。当我们看到一个活跃的企业环境时,总会发生
换句话说,L1、L2、L3 等缓存是否总是反射(reflect) CPU的字节序 ? 或者总是将数据存储在某些 的缓存中更有意义吗?特定字节序 ? 有没有总体设计决策 ? 最佳答案 大多数现代缓存不会
我想知道当前的 cpus 是否避免在其中至少一个为零时将两个数字相乘。谢谢 最佳答案 这取决于 CPU 和(在某些情况下)操作数的类型。 较旧/较简单的 CPU 通常使用如下乘法算法: integer
我有一个 CUDA 应用程序,它在一台计算机(配备 GTX 275)上运行良好,而在另一台配备 GeForce 8400 的计算机上运行速度慢了大约 100 倍。我怀疑有某种回退使代码实际上在 CPU
例如,对于 8 位 CPU,堆栈大小预计为 8 位宽,16 位 CPU 与 16 位堆栈宽度,以及 32 位、64 位 CPU,等等。是否适用于所有架构? 最佳答案 CPU 具有数据总线和地址总线。它
实现 SIMD 是否需要多核 CPU? 在阅读有关 SIMD 的维基百科时,我发现了以下短语“多处理元素”。那么这句话和“多核CPU”有什么区别呢? 最佳答案 不,每个内核通常都可以执行指令集中的大多
我遗漏了一些基本的东西。 CPU 流水线:在基本层面上,为什么指令需要不同数量的时钟周期才能完成,为什么有些指令在多级 CPU 中只需要 1 个周期? 除了明显的“不同的指令需要不同的工作量才能完成”
超线程 CPU 是实现并行还是仅实现并发(上下文切换)? 我的猜测是没有并行性,只有通过上下文切换的并发性。 最佳答案 单个物理 CPU 具有超线程的核心显示为 两个逻辑 CPU 到操作系统。 CPU
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎不是关于 a specific programming problem, a softwar
背景是这样的:下周我们的办公室将有一天因为维护而没有暖气。预计室外温度在 7 至 12 摄氏度之间,因此可能会变冷。可移植电取暖器数量太少,无法满足所有人的需求。 但是,在我大约 6-8 平方米的办公
我开发了一个应用程序,该应用程序在我的开发箱上的三个容器中运行,该开发箱具有带超线程的四核,这意味着系统和 docker 使用 8 个核心。 容器的 CPU 分配由 docker-compose 完成
我是一名优秀的程序员,十分优秀!