- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
作为 TF 的新手,我对 BatchDataset 在模型训练中的使用感到有些困惑。
我们以 MNIST 为例。在这个分类任务中,我们可以加载数据并将 x_trian、y_train 的 ndarray 直接输入模型。
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train,y_train, epochs=5)
训练结果如下:
Epoch 1/5
2021-02-17 15:43:02.621749: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll
1/1875 [..............................] - ETA: 0s - loss: 2.2977 - accuracy: 0.0938WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0000s vs `on_train_batch_end` time: 0.0010s). Check your callbacks.
1875/1875 [==============================] - 2s 1ms/step - loss: 0.3047 - accuracy: 0.9117
Epoch 2/5
1875/1875 [==============================] - 2s 1ms/step - loss: 0.1473 - accuracy: 0.9569
Epoch 3/5
1875/1875 [==============================] - 2s 1ms/step - loss: 0.1097 - accuracy: 0.9673
Epoch 4/5
1875/1875 [==============================] - 2s 1ms/step - loss: 0.0905 - accuracy: 0.9724
Epoch 5/5
1875/1875 [==============================] - 2s 1ms/step - loss: 0.0759 - accuracy: 0.9764
我们也可以使用 tf.data.Dataset.from_tensor_slices 生成一个 BatchDataset 并将其输入到 fit 函数中。
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_ds, epochs=5)
训练过程的结果如下。
Epoch 1/5
2021-02-17 15:30:34.698718: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll
1875/1875 [==============================] - 3s 1ms/step - loss: 0.2969 - accuracy: 0.9140
Epoch 2/5
1875/1875 [==============================] - 3s 1ms/step - loss: 0.1462 - accuracy: 0.9566
Epoch 3/5
1875/1875 [==============================] - 3s 1ms/step - loss: 0.1087 - accuracy: 0.9669
Epoch 4/5
1875/1875 [==============================] - 3s 1ms/step - loss: 0.0881 - accuracy: 0.9730
Epoch 5/5
1875/1875 [==============================] - 3s 1ms/step - loss: 0.0765 - accuracy: 0.9759
模型可以用 2 种方法训练成功,但是它们之间有什么区别吗?使用 Dataset 进行训练是否有一些额外的优势?如果在这种情况下 2 种方法之间没有区别,那么生成用于训练的数据集的典型用法是什么以及何时应该使用这种方法?
最佳答案
当我们使用 Model.fit(x=None, y=None, ...
- 我们可以将训练对参数作为纯 numpy
传递数组或 keras.utils.Sequence
或 tf.data
.
当我们如下使用时,我们将每个训练对( x
和 y
)分别作为直接 numpy 数组传递给 fit
功能。
# data
(x_train, y_train), (_, _) = tf.keras.datasets.mnist.load_data()
# fit
model.fit(x = x_train, y = y_train, ...
# check
print(x_train.shape, y_train.shape)
print(type(x_train), type(y_train))
# (60000, 28, 28) (60000,)
# <class 'numpy.ndarray'> <class 'numpy.ndarray'>
另一方面在
tf.data
和
Sequence
我们将训练对作为元组的形状传递,但数据类型仍然是
ndarray
.根据
doc ,
tf.data
数据集。应该返回一个元组 ( inputs
, targets
) keras.utils.Sequence
返回 ( inputs
, targets
) # data
train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(2)
# check
next(iter(train_ds))
(<tf.Tensor: shape=(2, 28, 28), dtype=uint8, numpy= array([[[...], [[...]]], dtype=uint8)>,
<tf.Tensor: shape=(2,), dtype=uint8, numpy=array([7, 8], dtype=uint8)>)
这就是为什么,如果
x
是
tf.data
,
generator
, 或
keras.utils.Sequence
实例,
y
不应指定(因为目标将从
x
获得)。
# fit
model.fit(train_ds, ...
在这三个中,
tf.data
数据管道是最有效的方法,其次是
generator
.当数据集足够小时,主要选择第一种方法(
x
和
y
)。但是当数据集足够大时,你会想到
tf.data
或
generator
用于高效的输入管道。所以这些的选择完全取决于。
关于tensorflow - 在 Tensorflow 2 的 fit 方法中使用 Dataset 和 ndarray 有什么区别?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66237656/
我想了解 Ruby 方法 methods() 是如何工作的。 我尝试使用“ruby 方法”在 Google 上搜索,但这不是我需要的。 我也看过 ruby-doc.org,但我没有找到这种方法。
Test 方法 对指定的字符串执行一个正则表达式搜索,并返回一个 Boolean 值指示是否找到匹配的模式。 object.Test(string) 参数 object 必选项。总是一个
Replace 方法 替换在正则表达式查找中找到的文本。 object.Replace(string1, string2) 参数 object 必选项。总是一个 RegExp 对象的名称。
Raise 方法 生成运行时错误 object.Raise(number, source, description, helpfile, helpcontext) 参数 object 应为
Execute 方法 对指定的字符串执行正则表达式搜索。 object.Execute(string) 参数 object 必选项。总是一个 RegExp 对象的名称。 string
Clear 方法 清除 Err 对象的所有属性设置。 object.Clear object 应为 Err 对象的名称。 说明 在错误处理后,使用 Clear 显式地清除 Err 对象。此
CopyFile 方法 将一个或多个文件从某位置复制到另一位置。 object.CopyFile source, destination[, overwrite] 参数 object 必选
Copy 方法 将指定的文件或文件夹从某位置复制到另一位置。 object.Copy destination[, overwrite] 参数 object 必选项。应为 File 或 F
Close 方法 关闭打开的 TextStream 文件。 object.Close object 应为 TextStream 对象的名称。 说明 下面例子举例说明如何使用 Close 方
BuildPath 方法 向现有路径后添加名称。 object.BuildPath(path, name) 参数 object 必选项。应为 FileSystemObject 对象的名称
GetFolder 方法 返回与指定的路径中某文件夹相应的 Folder 对象。 object.GetFolder(folderspec) 参数 object 必选项。应为 FileSy
GetFileName 方法 返回指定路径(不是指定驱动器路径部分)的最后一个文件或文件夹。 object.GetFileName(pathspec) 参数 object 必选项。应为
GetFile 方法 返回与指定路径中某文件相应的 File 对象。 object.GetFile(filespec) 参数 object 必选项。应为 FileSystemObject
GetExtensionName 方法 返回字符串,该字符串包含路径最后一个组成部分的扩展名。 object.GetExtensionName(path) 参数 object 必选项。应
GetDriveName 方法 返回包含指定路径中驱动器名的字符串。 object.GetDriveName(path) 参数 object 必选项。应为 FileSystemObjec
GetDrive 方法 返回与指定的路径中驱动器相对应的 Drive 对象。 object.GetDrive drivespec 参数 object 必选项。应为 FileSystemO
GetBaseName 方法 返回字符串,其中包含文件的基本名 (不带扩展名), 或者提供的路径说明中的文件夹。 object.GetBaseName(path) 参数 object 必
GetAbsolutePathName 方法 从提供的指定路径中返回完整且含义明确的路径。 object.GetAbsolutePathName(pathspec) 参数 object
FolderExists 方法 如果指定的文件夹存在,则返回 True;否则返回 False。 object.FolderExists(folderspec) 参数 object 必选项
FileExists 方法 如果指定的文件存在返回 True;否则返回 False。 object.FileExists(filespec) 参数 object 必选项。应为 FileS
我是一名优秀的程序员,十分优秀!