- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
您好,我有一个关于池分配器的问题。当我开始我的训练工作时,尝试执行“PoolAllocator”花了几个小时。一些日志如下所示。有没有办法调试/分析原因?我该如何改进?
谢谢!
tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 9639 get requests, put_count=4341 evicted_count=1000 eviction_rate=0.230362 and unsatisfied allocation rate=0.663762
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 100 to 110
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=2013 evicted_count=2000 eviction_rate=0.993542 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 7080 get requests, put_count=6922 evicted_count=5000 eviction_rate=0.722335 and unsatisfied allocation rate=0.730791
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 176 to 193
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=2025 evicted_count=2000 eviction_rate=0.987654 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=5030 evicted_count=5000 eviction_rate=0.994036 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=2044 evicted_count=2000 eviction_rate=0.978474 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 9617 get requests, put_count=8892 evicted_count=5000 eviction_rate=0.562303 and unsatisfied allocation rate=0.600915
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 596 to 655
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=2087 evicted_count=2000 eviction_rate=0.958313 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=3095 evicted_count=3000 eviction_rate=0.969305 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=1115 evicted_count=1000 eviction_rate=0.896861 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=1140 evicted_count=1000 eviction_rate=0.877193 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=1169 evicted_count=1000 eviction_rate=0.855432 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=1204 evicted_count=1000 eviction_rate=0.830565 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=2247 evicted_count=2000 eviction_rate=0.890076 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=8272 evicted_count=8000 eviction_rate=0.967118 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=2362 evicted_count=2000 eviction_rate=0.84674 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 10614 get requests, put_count=10944 evicted_count=2000 eviction_rate=0.182749 and unsatisfied allocation rate=0.198606
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 4823 to 5305
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 0 get requests, put_count=3705 evicted_count=3000 eviction_rate=0.809717 and unsatisfied allocation rate=0
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 4204990 get requests, put_count=4204742 evicted_count=3000 eviction_rate=0.00071348 and unsatisfied allocation rate=0.00104257
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 16377314 get requests, put_count=16374197 evicted_count=13000 eviction_rate=0.000793932 and unsatisfied allocation rate=0.00105347
最佳答案
实际上,这项工作运行良好。问题是python的输出缓冲。在作业完成之前,它不会显示任何训练结果。您可以通过以下方式禁用缓冲:
sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0)
关于tensorflow - 长时间在 "PoolAllocator",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36928391/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!