- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这个问题在这里已经有了答案:
How to find the indices of the top 10,000 elements in a symmetric matrix(12k X 12k) in R
(4 个回答)
7年前关闭。
假设我有一个巨大的向量 x
有 100 万个元素,我想找到最多 30 个元素的索引。我并不特别关心结果是否在这 30 个元素中排序,只要它们是整个向量中最大的 30 个即可。使用 order[x][1:30]
似乎相当昂贵,因为它必须对整个向量进行排序。我想过使用 partial
sort
中的选项,但是 sort
返回值和 index.return
partial
时不支持选项被指定。有没有一种有效的方法来查找索引而不对整个向量进行排序?
最佳答案
我想使用 sort 的 partial
添加混合方法参数和 which
:
whichpart <- function(x, n=30) {
nx <- length(x)
p <- nx-n
xp <- sort(x, partial=p)[p]
which(x > xp)
}
library("microbenchmark")
library("data.table")
library("compiler")
set.seed(123)
x <- rnorm(1e6)
y <- sample.int(1e6)
whichpart <- function(x, n=30) {
nx <- length(x)
p <- nx-n
xp <- sort(x, partial=p)[p]
which(x > xp)
}
cpwhichpart <- cmpfun(whichpart)
# using quicksort
quicksort <- function(x, n=30) {
sort(x, method="quick", decreasing=TRUE, index.return=TRUE)$ix[1:n]
}
cpquicksort <- cmpfun(quicksort)
# @Mariam
whichsort <- function(x, n=30) {
which(x >= sort(x, decreasing=TRUE)[30], arr.ind=TRUE)
}
cpwhichsort <- cmpfun(whichsort)
# @Ferdinand.kraft
top <- function(x, n=30) {
result <- numeric()
for(i in 1:n){
j <- which.max(x)
result[i] <- j
x[j] <- -Inf
}
result
}
cptop <- cmpfun(top)
# @Tony Breyal
dtable <- function(x, n=30) {
dt <- data.table(x=x, x.index=seq.int(x))
setkey(dt, "x")
dt$x.index[1:n]
}
cpdtable <- cmpfun(dtable)
# @Roland
roland <- cmpfun(function(x, n=30) {
y <- rep(-Inf, n)
for (i in seq_along(x)) {
if (x[i] > y[1]) {
y[1] <- x[i]
y <- y[order(y)]
}
}
y
})
## rnorm
microbenchmark(whichpart(x), cpwhichpart(x),
quicksort(x), cpquicksort(x),
whichsort(x), cpwhichsort(x),
top(x), cptop(x),
dtable(x), cpdtable(x),
roland(x), times=10)
# Unit: milliseconds
# expr min lq median uq max neval
# whichpart(x) 45.63544 46.05638 47.09077 49.68452 51.42065 10
# cpwhichpart(x) 45.65996 45.77212 47.02808 48.07482 82.20458 10
# quicksort(x) 100.90936 103.00783 105.17506 109.31784 139.83518 10
# cpquicksort(x) 100.53958 102.78017 107.64470 138.96630 142.52882 10
# whichsort(x) 148.86010 151.04350 155.80871 159.47063 184.56697 10
# cpwhichsort(x) 149.05578 150.21183 151.36918 166.58342 173.87567 10
# top(x) 146.10757 182.42089 184.53050 191.37293 193.62272 10
# cptop(x) 155.14354 179.14847 184.52323 196.80644 220.21222 10
# dtable(x) 1041.32457 1042.54904 1049.26096 1065.40606 1080.89969 10
# cpdtable(x) 1042.08247 1043.54915 1051.76366 1084.14360 1310.26485 10
# roland(x) 251.42885 261.47608 273.20838 295.09733 323.96257 10
## integer
microbenchmark(whichpart(y), cpwhichpart(y),
quicksort(y), cpquicksort(y),
whichsort(y), cpwhichsort(y),
top(y), cptop(y),
dtable(y), cpdtable(y),
roland(y), times=10)
# Unit: milliseconds
# expr min lq median uq max neval
# whichpart(y) 11.60703 11.76857 12.03704 12.52871 47.88526 10
# cpwhichpart(y) 11.62885 11.75006 12.53724 13.88563 46.93677 10
# quicksort(y) 88.14924 89.47630 92.42414 103.53439 137.44335 10
# cpquicksort(y) 88.11544 89.15334 92.63420 94.42244 133.78006 10
# whichsort(y) 122.34675 123.13634 124.91990 127.79134 131.43400 10
# cpwhichsort(y) 121.85618 122.91653 125.45211 127.14112 158.61535 10
# top(y) 163.06669 181.19004 211.11557 224.19237 239.63139 10
# cptop(y) 163.37903 173.55113 209.46770 218.59685 226.81545 10
# dtable(y) 499.50807 505.45513 514.55338 537.84129 604.86454 10
# cpdtable(y) 491.70016 498.62664 525.05342 527.14666 580.19429 10
# roland(y) 235.44664 237.52200 242.87925 268.34080 287.71196 10
identical(sort(quicksort(x)), whichpart(x))
# [1] TRUE
# @flodel
whichpartrev <- function(x, n=30) {
which(x >= -sort(-x, partial=n)[n])
}
microbenchmark(whichpart(x), whichpartrev(x), times=100)
# Unit: milliseconds
# expr min lq median uq max neval
# whichpart(x) 45.44940 46.15011 46.51321 48.67986 80.63286 100
# whichpartrev(x) 28.84482 31.30661 32.87695 62.37843 67.84757 100
microbenchmark(whichpart(y), whichpartrev(y), times=100)
# Unit: milliseconds
# expr min lq median uq max neval
# whichpart(y) 11.56135 12.26539 13.05729 13.75199 43.78484 100
# whichpartrev(y) 16.00612 16.73690 17.71687 19.04153 49.02842 100
关于R - 获取向量中最大 n 个元素的索引的最快方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18450778/
我看到以下宏 here . static const char LogTable256[256] = { #define LT(n) n, n, n, n, n, n, n, n, n, n, n,
这个问题不太可能帮助任何 future 的访问者;它只与一个小的地理区域、一个特定的时间点或一个非常狭窄的情况有关,这些情况并不普遍适用于互联网的全局受众。为了帮助使这个问题更广泛地适用,visit
所以我得到了这个算法我需要计算它的时间复杂度 这样的 for i=1 to n do k=i while (k<=n) do FLIP(A[k]) k
n 的 n 次方(即 n^n)是多项式吗? T(n) = 2T(n/2) + n^n 可以用master方法求解吗? 最佳答案 它不仅不是多项式,而且比阶乘还差。 O(n^n) 支配 O(n!)。同样
我正在研究一种算法,它可以在带有变音符号的字符(tilde、circumflex、caret、umlaut、caron)及其“简单”字符之间进行映射。 例如: ń ǹ ň ñ ṅ ņ ṇ
嗯..我从昨天开始学习APL。我正在观看 YouTube 视频,从基础开始学习各种符号,我正在使用 NARS2000。 我想要的是打印斐波那契数列。我知道有好几种代码,但是因为我没有研究过高深的东西,
已关闭。这个问题是 off-topic 。目前不接受答案。 想要改进这个问题吗? Update the question所以它是on-topic用于堆栈溢出。 已关闭12 年前。 Improve th
谁能帮我从 N * N * N → N 中找到一个双射数学函数,它接受三个参数 x、y 和 z 并返回数字 n? 我想知道函数 f 及其反函数 f',如果我有 n,我将能够通过应用 f'(n) 来
场景: 用户可以在字符串格式的方程式中输入任意数量的括号对。但是,我需要检查以确保所有括号 ( 或 ) 都有一个相邻的乘数符号 *。因此 3( 应该是 3*( 和 )3 应该是 )*3。 我需要将所有
在 Java 中,表达式: n+++n 似乎评估为等同于: n++ + n 尽管 +n 是一个有效的一元运算符,其优先级高于 n + n 中的算术 + 运算符。因此编译器似乎假设运算符不能是一元运算符
当我阅读 this 问题我记得有人曾经告诉我(很多年前),从汇编程序的角度来看,这两个操作非常不同: n = 0; n = n - n; 这是真的吗?如果是,为什么会这样? 编辑: 正如一些回复所指出
我正在尝试在reveal.js 中加载外部markdown 文件,该文件已编写为遵守数据分隔符语法: You can write your content as a separate file and
我试图弄清楚如何使用 Javascript 生成一个随机 11 个字符串,该字符串需要特定的字母/数字序列,以及位置。 ----------------------------------------
我最近偶然发现了一个资源,其中 2T(n/2) + n/log n 类型 的递归被 MM 宣布为无法解决。 直到今天,当另一种资源被证明是矛盾的(在某种意义上)时,我才接受它作为引理。 根据资源(下面
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 8 年前。 Improve th
我完成的一个代码遵循这个模式: for (i = 0; i < N; i++){ // O(N) //do some processing... } sort(array, array + N
有没有办法证明 f(n) + g(n) = theta(n^2) 还是不可能?假设 f(n) = theta(n^2) & g(n) = O(n^2) 我尝试了以下方法:f(n) = O(n^2) &
所以我目前正在尝试计算我拥有的一些数据的 Pearson R 和 p 值。这是通过以下代码完成的: import numpy as np from scipy.stats import pearson
ltree 列的默认排序为文本。示例:我的表 id、parentid 和 wbs 中有 3 列。 ltree 列 - wbs 将 1.1.12, 1.1.1, 1.1.2 存储在不同的行中。按 wbs
我的目标是编写一个程序来计算在 python 中表示数字所需的位数,如果我选择 number = -1 或任何负数,程序不会终止,这是我的代码: number = -1 cnt = 0 while(n
我是一名优秀的程序员,十分优秀!