gpt4 book ai didi

python - 如何在 python 中使用 GridSearchCV 以及管道和超参数

转载 作者:行者123 更新时间:2023-12-04 00:57:02 25 4
gpt4 key购买 nike

我使用了两个估计器,Randomforest 和 SVM

random_forest_pipeline=Pipeline([   
('vectorizer',CountVectorizer(stop_words='english')),
('random_forest',RandomForestClassifier())
])
svm_pipeline=Pipeline([
('vectorizer',CountVectorizer(stop_words='english')),
('svm',LinearSVC())
])

我想首先对数据进行矢量化,然后使用估计器,我正在浏览这个在线 tutorial 。然后我使用超参数如下
parameters=[
{
'vectorizer__max_features':[500,1000,1500],
'random_forest__min_samples_split':[50,100,250,500]
},
{
'vectorizer__max_features':[500,1000,1500],
'svm__C':[1,3,5]
}
]

并传递给 GridSearchCV
pipelines=[random_forest_pipeline,svm_pipeline]
grid_search=GridSearchCV(pipelines,param_grid=parameters,cv=3,n_jobs=-1)
grid_search.fit(x_train,y_train)

但是,当我运行代码时出现错误

TypeError: estimator should be an estimator implementing 'fit' method



不知道为什么我收到这个错误

最佳答案

问题是 pipelines=[random_forest_pipeline,svm_pipeline] 是一个没有 fit 方法的列表。

即使您可以以这种方式工作,在某些时候 'random_forest__min_samples_split':[50,100,250,500] 也会在 svm_pipeline 中传递,这会引发错误。

ValueError: Invalid parameter svm for estimator Pipeline



您不能以这种方式混合 2 个管道,因为在某些时候您要求使用 svm_pipeline 的值评估 random_forest__min_samples_split,这是无效的。

解决方案:Fit a GridSearch object for the Random forest model and another GridSearch object for the SVC model
pipelines=[random_forest_pipeline,svm_pipeline]

grid_search_1=GridSearchCV(pipelines[0],param_grid=parameters[0],cv=3,n_jobs=-1)
grid_search_1.fit(X,y)

grid_search_2=GridSearchCV(pipelines[1],param_grid=parameters[1],cv=3,n_jobs=-1)
grid_search_2.fit(X,y)

完整代码:
random_forest_pipeline=Pipeline([   
('vectorizer',CountVectorizer(stop_words='english')),
('random_forest',RandomForestClassifier())
])
svm_pipeline=Pipeline([
('vectorizer',CountVectorizer(stop_words='english')),
('svm',LinearSVC())
])

parameters=[
{
'vectorizer__max_features':[500,1000,1500],
'random_forest__min_samples_split':[50,100,250,500]
},
{
'vectorizer__max_features':[500,1000,1500],
'svm__C':[1,3,5]
}
]

pipelines=[random_forest_pipeline,svm_pipeline]

# gridsearch only for the Random Forest model
grid_search_1 =GridSearchCV(pipelines[0],param_grid=parameters[0],cv=3,n_jobs=-1)
grid_search_1.fit(X,y)

# gridsearch only for the SVC model
grid_search_2 =GridSearchCV(pipelines[1],param_grid=parameters[1],cv=3,n_jobs=-1)
grid_search_2.fit(X,y)

编辑

如果您将模型明确定义到 param_grid 列表中,则可以基于文档。

链接: https://scikit-learn.org/stable/auto_examples/compose/plot_compare_reduction.html?highlight=pipeline%20gridsearch

来自文档的代码:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.decomposition import PCA, NMF
from sklearn.feature_selection import SelectKBest, chi2

print(__doc__)

pipe = Pipeline([
# the reduce_dim stage is populated by the param_grid
('reduce_dim', 'passthrough'),
('classify', LinearSVC(dual=False, max_iter=10000))
])

N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
{
'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
]
reducer_labels = ['PCA', 'NMF', 'KBest(chi2)']

grid = GridSearchCV(pipe, n_jobs=1, param_grid=param_grid)
X, y = load_digits(return_X_y=True)
grid.fit(X, y)

关于python - 如何在 python 中使用 GridSearchCV 以及管道和超参数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61681254/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com