gpt4 book ai didi

tensorflow - 属性错误 : The layer has never been called and thus has no defined input shape

转载 作者:行者123 更新时间:2023-12-04 00:55:15 52 4
gpt4 key购买 nike

我正在尝试通过创建三个类来在 TensorFlow 2.0 中构建一个自动编码器:编码器、解码器和自动编码器。
由于我不想手动设置输入形状,我试图从编码器的 input_shape 推断解码器的输出形状。

import os
import shutil

import numpy as np
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.layers import Dense, Layer


def mse(model, original):
return tf.reduce_mean(tf.square(tf.subtract(model(original), original)))


def train_autoencoder(loss, model, opt, original):
with tf.GradientTape() as tape:
gradients = tape.gradient(
loss(model, original), model.trainable_variables)
gradient_variables = zip(gradients, model.trainable_variables)
opt.apply_gradients(gradient_variables)


def log_results(model, X, max_outputs, epoch, prefix):
loss_values = mse(model, X)

sample_img = X[sample(range(X.shape[0]), max_outputs), :]
original = tf.reshape(sample_img, (max_outputs, 28, 28, 1))
encoded = tf.reshape(
model.encode(sample_img), (sample_img.shape[0], 8, 8, 1))
decoded = tf.reshape(
model(tf.constant(sample_img)), (sample_img.shape[0], 28, 28, 1))
tf.summary.scalar("{}_loss".format(prefix), loss_values, step=epoch + 1)
tf.summary.image(
"{}_original".format(prefix),
original,
max_outputs=max_outputs,
step=epoch + 1)
tf.summary.image(
"{}_encoded".format(prefix),
encoded,
max_outputs=max_outputs,
step=epoch + 1)
tf.summary.image(
"{}_decoded".format(prefix),
decoded,
max_outputs=max_outputs,
step=epoch + 1)

return loss_values


def preprocess_mnist(batch_size):
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()

X_train = X_train / np.max(X_train)
X_train = X_train.reshape(X_train.shape[0],
X_train.shape[1] * X_train.shape[2]).astype(
np.float32)
train_dataset = tf.data.Dataset.from_tensor_slices(X_train).batch(
batch_size)

y_train = y_train.astype(np.int32)
train_labels = tf.data.Dataset.from_tensor_slices(y_train).batch(
batch_size)

X_test = X_test / np.max(X_test)
X_test = X_test.reshape(
X_test.shape[0], X_test.shape[1] * X_test.shape[2]).astype(np.float32)

y_test = y_test.astype(np.int32)

return X_train, X_test, train_dataset, y_train, y_test, train_labels


class Encoder(Layer):
def __init__(self, units):
super(Encoder, self).__init__()
self.units = units

def build(self, input_shape):
self.output_layer = Dense(units=self.units, activation=tf.nn.relu)

@tf.function
def call(self, X):
return self.output_layer(X)


class Decoder(Layer):
def __init__(self, encoder):
super(Decoder, self).__init__()
self.encoder = encoder

def build(self, input_shape):
self.output_layer = Dense(units=self.encoder.input_shape)

@tf.function
def call(self, X):
return self.output_layer(X)


class AutoEncoder(Model):
def __init__(self, units):
super(AutoEncoder, self).__init__()
self.units = units

def build(self, input_shape):
self.encoder = Encoder(units=self.units)
self.encoder.build(input_shape)
self.decoder = Decoder(encoder=self.encoder)

@tf.function
def call(self, X):
Z = self.encoder(X)
return self.decoder(Z)

@tf.function
def encode(self, X):
return self.encoder(X)

@tf.function
def decode(self, Z):
return self.decode(Z)


def test_autoencoder(batch_size,
learning_rate,
epochs,
max_outputs=4,
seed=None):

tf.random.set_seed(seed)

X_train, X_test, train_dataset, _, _, _ = preprocess_mnist(
batch_size=batch_size)

autoencoder = AutoEncoder(units=64)
opt = tf.optimizers.Adam(learning_rate=learning_rate)

log_path = 'logs/autoencoder'
if os.path.exists(log_path):
shutil.rmtree(log_path)

writer = tf.summary.create_file_writer(log_path)

with writer.as_default():
with tf.summary.record_if(True):
for epoch in range(epochs):
for step, batch in enumerate(train_dataset):
train_autoencoder(mse, autoencoder, opt, batch)

# logs (train)
train_loss = log_results(
model=autoencoder,
X=X_train,
max_outputs=max_outputs,
epoch=epoch,
prefix='train')

# logs (test)
test_loss = log_results(
model=autoencoder,
X=X_test,
max_outputs=max_outputs,
epoch=epoch,
prefix='test')

writer.flush()

template = 'Epoch {}, Train loss: {:.5f}, Test loss: {:.5f}'
print(
template.format(epoch + 1, train_loss.numpy(),
test_loss.numpy()))

if not os.path.exists('saved_models'):
os.makedirs('saved_models')
np.savez_compressed('saved_models/encoder.npz',
*autoencoder.encoder.get_weights())


if __name__ == '__main__':
test_autoencoder(batch_size=128, learning_rate=1e-3, epochs=20, seed=42)

由于编码器的输入形状用于解码器的构建功能,我希望当我训练自动编码器时,首先构建编码器,然后构建解码器,但情况似乎并非如此。我还尝试通过调用 self.encoder.build() 在解码器的构建函数中构建编码器。在解码器的构建功能开始时,但没有任何区别。我究竟做错了什么?

我收到的错误:
AttributeError: The layer has never been called and thus has no defined input shape.

最佳答案

你快到了,只是有点过于复杂了。您收到此错误是因为 Decoder层依赖于 Encoder尚未建成 (因为调用 build 不成功)它是 input_shape属性 不是 放。

解决方案是从 AutoEncoder 传递正确的输出形状像这样的对象:

class Decoder(Layer):
def __init__(self, units):
super(Decoder, self).__init__()
self.units = units

def build(self, _):
self.output_layer = Dense(units=self.units)

def call(self, X):
return self.output_layer(X)


class AutoEncoder(Model):
def __init__(self, units):
super(AutoEncoder, self).__init__()
self.units = units

def build(self, input_shape):
self.encoder = Encoder(units=self.units)
self.decoder = Decoder(units=input_shape[-1])

请注意,我已删除 @tf,function装饰器,因为您不太可能获得任何效率提升( keras 已经为您创建了引擎盖下的静态图)。

此外,正如您所见,您的构建不依赖于 input_shape信息,因此所有创建都可以安全地移动到构造函数,如下所示:
class Encoder(Layer):
def __init__(self, units):
super(Encoder, self).__init__()
self.output_layer = Dense(units=units, activation=tf.nn.relu)

def call(self, X):
return self.output_layer(X)


class Decoder(Layer):
def __init__(self, units):
super(Decoder, self).__init__()
self.output_layer = Dense(units=units)

def call(self, X):
return self.output_layer(X)


class AutoEncoder(Model):
def __init__(self, units):
super(AutoEncoder, self).__init__()
self.units = units

def build(self, input_shape):
self.encoder = Encoder(units=self.units)
self.decoder = Decoder(units=input_shape[-1])

def call(self, X):
Z = self.encoder(X)
return self.decoder(Z)

def encode(self, X):
return self.encoder(X)

def decode(self, Z):
return self.decode(Z)

以上求个问题是否分开 DecoderEncoder确实需要图层。 IMO 那些应该被排除在外,这给我们留下了这个简短易读的片段:
class AutoEncoder(Model):
def __init__(self, units):
super(AutoEncoder, self).__init__()
self.units = units

def build(self, input_shape):
self.encoder = Dense(units=self.units, activation=tf.nn.relu)
self.decoder = Dense(units=input_shape[-1])

def call(self, X):
Z = self.encoder(X)
return self.decoder(Z)

def encode(self, X):
return self.encoder(X)

def decode(self, Z):
return self.decode(Z)

顺便提一句。您在 sample 中有错误但毫无疑问,这是一个你可以自己处理的未成年人。

关于tensorflow - 属性错误 : The layer has never been called and thus has no defined input shape,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55321864/

52 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com