gpt4 book ai didi

sql - SparkSQL 错误表未找到

转载 作者:行者123 更新时间:2023-12-04 00:49:46 27 4
gpt4 key购买 nike

我将 RDD[myClass] 转换为数据帧,然后将其注册为
SQL表

my_rdd.toDF().registerTempTable("my_rdd")

该表是可调用的,可以使用以下命令进行演示
%sql

SELECT * from my_rdd limit 5

但是下一步给出错误,说找不到表:my_rdd
val my_df = sqlContext.sql("SELECT * from my_rdd limit 5")

Spark 的新手。不明白为什么会这样。谁能帮我解决这个问题?
java.lang.RuntimeException: Table Not Found: my_rdd
at scala.sys.package$.error(package.scala:27)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog$$anonfun$1.apply(Catalog.scala:111)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog$$anonfun$1.apply(Catalog.scala:111)
at scala.collection.MapLike$class.getOrElse(MapLike.scala:128)
at scala.collection.AbstractMap.getOrElse(Map.scala:58)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.lookupRelation(Catalog.scala:111)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:175)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$6.applyOrElse(Analyzer.scala:187)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$6.applyOrElse(Analyzer.scala:182)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:50)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:186)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:207)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:236)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:192)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:207)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:236)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:192)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:177)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:182)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:172)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
at org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:1071)
at org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:1071)
at org.apache.spark.sql.SQLContext$QueryExecution.assertAnalyzed(SQLContext.scala:1069)
at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133)
at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:51)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:915)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:68)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:73)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:75)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:77)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:79)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:81)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:83)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:85)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:87)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:89)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:91)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:93)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:95)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:97)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:99)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:101)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:103)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:105)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:107)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:109)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:111)
at $iwC$$iwC$$iwC.<init>(<console>:113)
at $iwC$$iwC.<init>(<console>:115)
at $iwC.<init>(<console>:117)
at <init>(<console>:119)
at .<init>(<console>:123)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:483)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1338)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
at org.apache.zeppelin.spark.SparkInterpreter.interpretInput(SparkInterpreter.java:556)
at org.apache.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:532)
at org.apache.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:525)
at org.apache.zeppelin.interpreter.ClassloaderInterpreter.interpret(ClassloaderInterpreter.java:57)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:93)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:264)
at org.apache.zeppelin.scheduler.Job.run(Job.java:170)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:118)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)

最佳答案

确保从同一个 SQLContext 导入implicits._。临时表保存在内存中的一个特定 SQLContext 中。

val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
my_rdd.toDF().registerTempTable("my_rdd")

val my_df = sqlContext.sql("SELECT * from my_rdd LIMIT 5")
my_df.collect().foreach(println)

关于sql - SparkSQL 错误表未找到,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30263646/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com