- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
16/11/13 12:55:20 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
java.io.NotSerializableException: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord, value: ConsumerRecord(topic = local1, partition = 0, offset = 10000, CreateTime = 1479012919187, checksum = 1713832959, serialized key size = -1, serialized value size = 1, key = null, value = a))
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark._
import org.apache.commons.codec.StringDecoder
import org.apache.spark.streaming._
object KafkaConsumer_spark_test {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("KafkaConsumer_spark_test").setMaster("local[4]")
val ssc = new StreamingContext(conf, Seconds(1))
ssc.checkpoint("./checkpoint")
val kafkaParams =Map[String, Object](
"bootstrap.servers" -> "localhost:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "example",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val topics = Array("local1")
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
stream.map(record => (record.key, record.value))
stream.print()
ssc.start()
ssc.awaitTermination()
}
}
16/11/13 12:55:20 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
java.io.NotSerializableException: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord, value: ConsumerRecord(topic = local1, partition = 0, offset = 10000, CreateTime = 1479012919187, checksum = 1713832959, serialized key size = -1, serialized value size = 1, key = null, value = a))
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
16/11/13 12:55:20 ERROR TaskSetManager: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord, value: ConsumerRecord(topic = local1, partition = 0, offset = 10000, CreateTime = 1479012919187, checksum = 1713832959, serialized key size = -1, serialized value size = 1, key = null, value = a))
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11); not retrying
16/11/13 12:55:20 ERROR JobScheduler: Error running job streaming job 1479012920000 ms.0
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord, value: ConsumerRecord(topic = local1, partition = 0, offset = 10000, CreateTime = 1479012919187, checksum = 1713832959, serialized key size = -1, serialized value size = 1, key = null, value = a))
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1450)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1438)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1437)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1437)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1659)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1618)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1607)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1884)
at org.apache.spark.streaming.kafka010.KafkaRDD.take(KafkaRDD.scala:122)
at org.apache.spark.streaming.kafka010.KafkaRDD.take(KafkaRDD.scala:50)
at org.apache.spark.streaming.dstream.DStream$$anonfun$print$2$$anonfun$foreachFunc$3$1.apply(DStream.scala:734)
at org.apache.spark.streaming.dstream.DStream$$anonfun$print$2$$anonfun$foreachFunc$3$1.apply(DStream.scala:733)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:245)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:245)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:245)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:244)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord, value: ConsumerRecord(topic = local1, partition = 0, offset = 10000, CreateTime = 1479012919187, checksum = 1713832959, serialized key size = -1, serialized value size = 1, key = null, value = a))
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1450)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1438)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1437)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1437)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1659)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1618)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1607)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1884)
at org.apache.spark.streaming.kafka010.KafkaRDD.take(KafkaRDD.scala:122)
at org.apache.spark.streaming.kafka010.KafkaRDD.take(KafkaRDD.scala:50)
at org.apache.spark.streaming.dstream.DStream$$anonfun$print$2$$anonfun$foreachFunc$3$1.apply(DStream.scala:734)
at org.apache.spark.streaming.dstream.DStream$$anonfun$print$2$$anonfun$foreachFunc$3$1.apply(DStream.scala:733)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:245)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:245)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:245)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:244)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
最佳答案
KafkaUtils.createDirectStream 创建为 org.apache.spark.streaming.dstream.DStream。它不是 RDD。 Spark Streaming 将在运行时临时创建 RDD。要检索 RDD,请使用 stream.foreach() 获取 RDD,然后使用 RDD.foreach 获取 RDD 中的每个对象。这些将是您使用 value() 方法从 Kafka 主题读取消息的 Kafka ConsumerRecords:
stream.foreachRDD { rdd =>
rdd.foreach { record =>
val value = record.value()
println(map.get(value))
}
}
关于apache-spark - 如何修复 Spark Streaming Kafka Consumer 中的 "java.io.NotSerializableException: org.apache.kafka.clients.consumer.ConsumerRecord"?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40570874/
我在 Windows 机器上启动 Kafka-Server 时出现以下错误。我已经从以下链接下载了 Scala 2.11 - kafka_2.11-2.1.0.tgz:https://kafka.ap
关于Apache-Kafka messaging queue . 我已经从 Kafka 下载页面下载了 Apache Kafka。我已将其提取到 /opt/apache/installed/kafka
假设我有 Kafka 主题 cars。 我还有一个消费者组 cars-consumers 订阅了 cars 主题。 cars-consumers 消费者组当前位于偏移量 89。 当我现在删除 cars
我想知道什么最适合我:Kafka 流或 Kafka 消费者 api 或 Kafka 连接? 我想从主题中读取数据,然后进行一些处理并写入数据库。所以我编写了消费者,但我觉得我可以编写 Kafka 流应
我曾研究过一些 Kafka 流应用程序和 Kafka 消费者应用程序。最后,Kafka流不过是消费来自Kafka的实时事件的消费者。因此,我无法弄清楚何时使用 Kafka 流或为什么我们应该使用
Kafka Acknowledgement 和 Kafka 消费者 commitSync() 有什么区别 两者都用于手动偏移管理,并希望两者同步工作。 请协助 最佳答案 使用 spring-kafka
如何在 Kafka 代理上代理 Apache Kafka 生产者请求,并重定向到单独的 Kafka 集群? 在我的特定情况下,无法更新写入此集群的客户端。这意味着,执行以下操作是不可行的: 更新客户端
我需要在 Kafka 10 中命名我的消费者,就像我在 Kafka 8 中所做的一样,因为我有脚本可以嗅出并进一步使用这些信息。 显然,consumer.id 的默认命名已更改(并且现在还单独显示了
1.概述 我们会看到zk的数据中有一个节点/log_dir_event_notification/,这是一个序列号持久节点 这个节点在kafka中承担的作用是: 当某个Broker上的LogDir出现
我正在使用以下命令: bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test.topic --property
我很难理解 Java Spring Boot 中的一些 Kafka 概念。我想针对在服务器上运行的真实 Kafka 代理测试消费者,该服务器有一些生产者已将数据写入/已经将数据写入各种主题。我想与服务
我的场景是我使用了很多共享前缀的 Kafka 主题(例如 house.door, house.room ) 并使用 Kafka 流正则表达式主题模式 API 使用所有主题。 一切看起来都不错,我得到了
有没有办法以编程方式获取kafka集群的版本?例如,使用AdminClient应用程序接口(interface)。 我想在消费者/生产者应用程序中识别 kafka 集群的版本。 最佳答案 目前无法检索
每当我尝试重新启动 kafka 时,它都会出现以下错误。一旦我删除/tmp/kafka-logs 它就会得到解决,但它也会删除我的主题。 有办法解决吗? ERROR Error while
我是 Apache Kafka 的新用户,我仍在了解内部结构。 在我的用例中,我需要从 Kafka Producer 客户端动态增加主题的分区数。 我发现了其他类似的 questions关于增加分区大
正如 Kafka 文档所示,一种方法是通过 kafka.tools.MirrorMaker 来实现这一点。但是,我需要将一个主题(比如 测试 带 1 个分区)(其内容和元数据)从生产环境复制到没有连接
我已经在集群中配置了 3 个 kafka,我正在尝试与 spring-kafka 一起使用。 但是在我杀死 kafka 领导者之后,我无法将其他消息发送到队列中。 我将 spring.kafka.bo
我的 kafka sink 连接器从多个主题(配置了 10 个任务)读取,并处理来自所有主题的 300 条记录。根据每个记录中保存的信息,连接器可以执行某些操作。 以下是触发器记录中键值对的示例: "
我有以下 kafka 流代码 public class KafkaStreamHandler implements Processor{ private ProcessorConte
当 kafka-streams 应用程序正在运行并且 Kafka 突然关闭时,应用程序进入“等待”模式,发送警告日志的消费者和生产者线程无法连接,当 Kafka 回来时,一切都应该(理论上)去恢复正常
我是一名优秀的程序员,十分优秀!