gpt4 book ai didi

r - 如何避免 data.table 中的优化警告

转载 作者:行者123 更新时间:2023-12-04 00:43:24 25 4
gpt4 key购买 nike

我有以下代码:

> dt <- data.table(a=c(rep(3,5),rep(4,5)),b=1:10,c=11:20,d=21:30,key="a")
> dt
a b c d
1: 3 1 11 21
2: 3 2 12 22
3: 3 3 13 23
4: 3 4 14 24
5: 3 5 15 25
6: 4 6 16 26
7: 4 7 17 27
8: 4 8 18 28
9: 4 9 19 29
10: 4 10 20 30
> dt[,lapply(.SD,sum),by="a"]
Finding groups (bysameorder=TRUE) ... done in 0secs. bysameorder=TRUE and o__ is length 0
Optimized j from 'lapply(.SD, sum)' to 'list(sum(b), sum(c), sum(d))'
Starting dogroups ... done dogroups in 0 secs
a b c d
1: 3 15 65 115
2: 4 40 90 140
> dt[,c(count=.N,lapply(.SD,sum)),by="a"]
Finding groups (bysameorder=TRUE) ... done in 0secs. bysameorder=TRUE and o__ is length 0
Optimization is on but j left unchanged as 'c(count = .N, lapply(.SD, sum))'
Starting dogroups ... The result of j is a named list. It's very inefficient to create the same names over and over again for each group. When j=list(...), any names are detected, removed and put back after grouping has completed, for efficiency. Using j=transform(), for example, prevents that speedup (consider changing to :=). This message may be upgraded to warning in future.
done dogroups in 0 secs
a count b c d
1: 3 5 15 65 115
2: 4 5 40 90 140

如何避免可怕的“非常低效”警告?

我可以在连接之前添加 count 列:

> dt$count <- 1
> dt
a b c d count
1: 3 1 11 21 1
2: 3 2 12 22 1
3: 3 3 13 23 1
4: 3 4 14 24 1
5: 3 5 15 25 1
6: 4 6 16 26 1
7: 4 7 17 27 1
8: 4 8 18 28 1
9: 4 9 19 29 1
10: 4 10 20 30 1
> dt[,lapply(.SD,sum),by="a"]
Finding groups (bysameorder=TRUE) ... done in 0secs. bysameorder=TRUE and o__ is length 0
Optimized j from 'lapply(.SD, sum)' to 'list(sum(b), sum(c), sum(d), sum(count))'
Starting dogroups ... done dogroups in 0 secs
a b c d count
1: 3 15 65 115 5
2: 4 40 90 140 5

但这看起来不太优雅......

最佳答案

我能想到的一种方法是通过引用分配count:

dt.out <- dt[, lapply(.SD,sum), by = a]
dt.out[, count := dt[, .N, by=a][, N]]
# alternatively: count := table(dt$a)

# a b c d count
# 1: 3 15 65 115 5
# 2: 4 40 90 140 5

编辑 1: 我仍然认为这只是消息而不是警告。但如果您仍然想避免这种情况,只需执行以下操作:

dt.out[, count := as.numeric(dt[, .N, by=a][, N])]

编辑 2:非常有趣。执行多个 := 赋值的等效操作不会产生相同的消息。

dt.out[, `:=`(count = dt[, .N, by=a][, N])]
# Detected that j uses these columns: a
# Finding groups (bysameorder=TRUE) ... done in 0.001secs. bysameorder=TRUE and o__ is length 0
# Detected that j uses these columns: <none>
# Optimization is on but j left unchanged as '.N'
# Starting dogroups ... done dogroups in 0 secs
# Detected that j uses these columns: N
# Assigning to all 2 rows
# Direct plonk of unnamed RHS, no copy.

关于r - 如何避免 data.table 中的优化警告,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16132625/

25 4 0