- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
下面是分类器的一些代码。我使用pickle来保存和加载这个page中指示的分类器.但是,当我加载它使用它时,我无法使用CountVectorizer()
和 TfidfTransformer()
将原始文本转换为分类器可以使用的向量。
我唯一能够让它工作的是在训练分类器后立即分析文本,如下所示。
import os
import sklearn
from sklearn.datasets import load_files
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix
from sklearn.feature_extraction.text import CountVectorizer
import nltk
import pandas
import pickle
class Classifier:
def __init__(self):
self.moviedir = os.getcwd() + '/txt_sentoken'
def Training(self):
# loading all files.
self.movie = load_files(self.moviedir, shuffle=True)
# Split data into training and test sets
docs_train, docs_test, y_train, y_test = train_test_split(self.movie.data, self.movie.target,
test_size = 0.20, random_state = 12)
# initialize CountVectorizer
self.movieVzer = CountVectorizer(min_df=2, tokenizer=nltk.word_tokenize, max_features=5000)
# fit and tranform using training text
docs_train_counts = self.movieVzer.fit_transform(docs_train)
# Convert raw frequency counts into TF-IDF values
self.movieTfmer = TfidfTransformer()
docs_train_tfidf = self.movieTfmer.fit_transform(docs_train_counts)
# Using the fitted vectorizer and transformer, tranform the test data
docs_test_counts = self.movieVzer.transform(docs_test)
docs_test_tfidf = self.movieTfmer.transform(docs_test_counts)
# Now ready to build a classifier.
# We will use Multinominal Naive Bayes as our model
# Train a Multimoda Naive Bayes classifier. Again, we call it "fitting"
self.clf = MultinomialNB()
self.clf.fit(docs_train_tfidf, y_train)
# save the model
filename = 'finalized_model.pkl'
pickle.dump(self.clf, open(filename, 'wb'))
# Predict the Test set results, find accuracy
y_pred = self.clf.predict(docs_test_tfidf)
# Accuracy
print(sklearn.metrics.accuracy_score(y_test, y_pred))
self.Categorize()
def Categorize(self):
# very short and fake movie reviews
reviews_new = ['This movie was excellent', 'Absolute joy ride', 'It is pretty good',
'This was certainly a movie', 'I fell asleep halfway through',
"We can't wait for the sequel!!", 'I cannot recommend this highly enough', 'What the hell is this shit?']
reviews_new_counts = self.movieVzer.transform(reviews_new) # turn text into count vector
reviews_new_tfidf = self.movieTfmer.transform(reviews_new_counts) # turn into tfidf vector
# have classifier make a prediction
pred = self.clf.predict(reviews_new_tfidf)
# print out results
for review, category in zip(reviews_new, pred):
print('%r => %s' % (review, self.movie.target_names[category]))
最佳答案
在 MaximeKan 的建议下,我研究了一种保存所有 3 个的方法。
保存模型和矢量化器
import pickle
with open(filename, 'wb') as fout:
pickle.dump((movieVzer, movieTfmer, clf), fout)
import pickle
with open('finalized_model.pkl', 'rb') as f:
movieVzer, movieTfmer, clf = pickle.load(f)
关于python-3.x - 如何使用 Countvectorizer() 和 TfidfTransformer() 在 sklearn 中保存分类器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58020251/
我知道有几个类似的问题被问到,但我的问题仍然没有得到解答。 问题来了。我使用命令 python3 -m pip3 install -U scikit-learn 来安装 sklearn、numpy 和
_train_weather.values : [[ 0.61818182 0.81645199 0.6679803 ..., 0. 0. 1.
如果我有一个数据集X及其标签Y,那么我将其分为训练集和测试集,scle为0.2,并使用随机种子进行洗牌: 11 >>>X.shape (10000, 50,50) train_data, test_d
首先我查看了所有相关问题。给出了非常相似的问题。 所以我遵循了链接中的建议,但没有一个对我有用。 Data Conversion Error while applying a function to
这里有两种标准化方法: 1:这个在数据预处理中使用:sklearn.preprocessing.normalize(X,norm='l2') 2:分类方法中使用另一种方法:sklearn.svm.Li
所以刚看了一个教程,作者不需要import sklearn使用时 predict anaconda 环境中pickled 模型的功能(安装了sklearn)。 我试图在 Google Colab 中重
我想评估我的机器学习模型。我使用 roc_auc_score() 计算了 ROC 曲线下的面积,并使用 sklearn 的 plot_roc_curve() 函数绘制了 ROC 曲线。在第二个函数中,
我一直在寻找此信息,但在任何地方都找不到,所以这是我的镜头。 我是Python 2.7的初学者,我学习了一个模型,感谢cPickle我保存了它,但现在我想知道是否可以从另一个设备(没有sklearn库
>>> import sklearn.model_selection.train_test_split Traceback (most recent call last): File "", li
在阅读有关使用 python 的 LinearDiscriminantAnalysis 的过程中,我有两种不同的方法来实现它,可在此处获得, http://scikit-learn.org/stabl
我正在使用 sklearn,我注意到 sklearn.metrics.plot_confusion_matrix 的参数和 sklearn.metrics.confusion_matrix不一致。 p
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我想看看模型是否收敛于我的交叉验证。我如何增加或减少 sklearn.svm.SVC 中的时代? 目前: SVM_Model = SVC(gamma='auto') SVM_Model.fit(X_t
有人可以帮助我吗?我很难知道它们之间的区别 from sklearn.model_selection import train_test_split from sklearn.cross_valida
我需要提取在 sklearn.ensemble.BaggingClassifier 中训练的每个模型的概率。这样做的原因是为了估计 XGBoostClassifier 模型的不确定性。 为此,我创建了
无法使用 scikit-learn 0.19.1 导入 sklearn.qda 和 sklearn.lda 我得到: 导入错误:没有名为“sklearn.qda”的模块 导入错误:没有名为“sklea
我正在尝试在 google cloud ai 平台上创建一个版本,但找不到 impute 模块 No module named 'sklearn.impute._base; 'sklearn.impu
我在 PyQt5 中编写了一个 GUI,其中包括以下行 from sklearn.ensemble import RandomForestClassifier 。 遵循this answer中的建议,
我正在做一个 Kaggle 比赛,需要输入一些缺失的数据。我安装了最新的Anaconda(4.5.4)具有所有相关依赖项(即 scikit-learn (0.19.1) )。 当我尝试导入模块时,出现
在安装了所需的模块后,我正在尝试将imblearn导入到我的Python笔记本中。但是,我收到以下错误:。。附加信息:我使用的是一个用Visual Studio代码编写的虚拟环境。。我已经确定venv
我是一名优秀的程序员,十分优秀!