gpt4 book ai didi

python - 将 pandas df 转换为嵌套字典

转载 作者:行者123 更新时间:2023-12-03 23:59:07 25 4
gpt4 key购买 nike

我需要转换以下格式的 df:

d = {
'A': ['a1', 'a1', 'a1', 'a1', 'a1', 'a1', 'a1', 'a2', 'a2', 'a2', 'a2', 'a2', 'a2', 'a2', 'a2'],
'B': ['b1', 'b1', 'b1', 'b1', 'b2', 'b2', 'b2', 'b3', 'b3', 'b3', 'b3', 'b3', 'b3', 'b4', 'b4', ],
'C': ['c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'c10', 'c11', 'c12', 'c13', 'c14', 'c15', ],
'D': ['d1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'd10', 'd11', 'd12', 'd13', 'd14', 'd15', ],
'E': ['e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'e10', 'e11', 'e12', 'e13', 'e14', 'e15', ],
}

df = pd.DataFrame(d)
df

A B C D E
a1 b1 c1 d1 e1
a1 b1 c2 d2 e2
a1 b1 c3 d3 e3
a1 b1 c4 d4 e4
a1 b2 c5 d5 e5
a1 b2 c6 d6 e6
a1 b2 c7 d7 e7
a2 b3 c8 d8 e8
a2 b3 c9 d9 e9
a2 b3 c10 d10 e10
a2 b3 c11 d11 e11
a2 b3 c12 d12 e12
a2 b3 c13 d13 e13
a2 b4 c14 d14 e14
a2 b4 c15 d15 e15

到以下格式的字典:

outDict = {
'a1': {
'b1': {
'c': ['c1', 'c2', 'c3', 'c4'],
'd': ['d1', 'd2', 'd3', 'd4'],
'e': ['e1', 'e2', 'e3', 'e4'],
},
'b2': {
'c': ['c5', 'c6', 'c7'],
'd': ['d5', 'd6', 'd7'],
'e': ['e5', 'e6', 'e7'],
},
},
'a2': {
'b3': {
'c': ['c8', 'c9', 'c10', 'c11', 'c12', 'c13'],
'd': ['d8', 'd9', 'd10', 'd11', 'd12', 'd13'],
'e': ['e8', 'e9', 'e10', 'e11', 'e12', 'e13'],
},
'b4': {
'c': ['c14', 'c15'],
'd': ['d14', 'd15'],
'e': ['e14', 'e15'],
}
}
}

即将 A 列中的值转换为一级键; B 列中的值到二级键和 C、D、E 列中的值到列表。

最佳答案

首先通过转换 A, B 创建嵌套列表索引,按索引值分组,所有列都转换为 list s 在 lambda 函数中,最后将 Series 转换为 MultiIndex到嵌套字典:

df = (df.set_index(['A', 'B'])
.groupby(['A', 'B'])
.apply(lambda x: x.to_dict(orient='list')))

d = {level: df.xs(level).to_dict() for level in df.index.levels[0]}

print (d)

{
'a1': {
'b1': {
'C': ['c1', 'c2', 'c3', 'c4'],
'D': ['d1', 'd2', 'd3', 'd4'],
'E': ['e1', 'e2', 'e3', 'e4']
},
'b2': {
'C': ['c5', 'c6', 'c7'],
'D': ['d5', 'd6', 'd7'],
'E': ['e5', 'e6', 'e7']
}
},
'a2': {
'b3': {
'C': ['c8', 'c9', 'c10', 'c11', 'c12', 'c13'],
'D': ['d8', 'd9', 'd10', 'd11', 'd12', 'd13'],
'E': ['e8', 'e9', 'e10', 'e11', 'e12', 'e13']
},
'b4': {
'C': ['c14', 'c15'],
'D': ['d14', 'd15'],
'E': ['e14', 'e15']
}
}
}

如果需要小写的嵌套键只重命名列:

df = df.rename(columns={'C':'c', 'D':'d', 'E':'e'})

df = (df.set_index(['A', 'B'])
.groupby(['A', 'B'])
.apply(lambda x: x.to_dict(orient='list')))

d = {level: df.xs(level).to_dict() for level in df.index.levels[0]}

print (d)

{
'a1': {
'b1': {
'c': ['c1', 'c2', 'c3', 'c4'],
'd': ['d1', 'd2', 'd3', 'd4'],
'e': ['e1', 'e2', 'e3', 'e4']
},
'b2': {
'c': ['c5', 'c6', 'c7'],
'd': ['d5', 'd6', 'd7'],
'e': ['e5', 'e6', 'e7']
}
},
'a2': {
'b3': {
'c': ['c8', 'c9', 'c10', 'c11', 'c12', 'c13'],
'd': ['d8', 'd9', 'd10', 'd11', 'd12', 'd13'],
'e': ['e8', 'e9', 'e10', 'e11', 'e12', 'e13']
},
'b4': {
'c': ['c14', 'c15'],
'd': ['d14', 'd15'],
'e': ['e14', 'e15']
}
}
}

关于python - 将 pandas df 转换为嵌套字典,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64817116/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com