- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试为图像分类实现一个 FCNN,它可以接受可变大小的输入。该模型是在 Keras 中构建的,带有 TensorFlow 后端。
考虑以下玩具示例:
model = Sequential()
# width and height are None because we want to process images of variable size
# nb_channels is either 1 (grayscale) or 3 (rgb)
model.add(Convolution2D(32, 3, 3, input_shape=(nb_channels, None, None), border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 3, 3, border_mode='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(16, 1, 1))
model.add(Activation('relu'))
model.add(Convolution2D(8, 1, 1))
model.add(Activation('relu'))
# reduce the number of dimensions to the number of classes
model.add(Convolution2D(nb_classses, 1, 1))
model.add(Activation('relu'))
# do global pooling to yield one value per class
model.add(GlobalAveragePooling2D())
model.add(Activation('softmax'))
input_shape=(nb_channels, None, None)
也是如此指定可变大小输入的正确方法?有什么办法可以缓解这个性能问题?
model.summary()
对于具有 3 个类和灰度图像的模型:
Layer (type) Output Shape Param # Connected to
====================================================================================================
convolution2d_1 (Convolution2D) (None, 32, None, None 320 convolution2d_input_1[0][0]
____________________________________________________________________________________________________
activation_1 (Activation) (None, 32, None, None 0 convolution2d_1[0][0]
____________________________________________________________________________________________________
maxpooling2d_1 (MaxPooling2D) (None, 32, None, None 0 activation_1[0][0]
____________________________________________________________________________________________________
convolution2d_2 (Convolution2D) (None, 32, None, None 9248 maxpooling2d_1[0][0]
____________________________________________________________________________________________________
maxpooling2d_2 (MaxPooling2D) (None, 32, None, None 0 convolution2d_2[0][0]
____________________________________________________________________________________________________
convolution2d_3 (Convolution2D) (None, 16, None, None 528 maxpooling2d_2[0][0]
____________________________________________________________________________________________________
activation_2 (Activation) (None, 16, None, None 0 convolution2d_3[0][0]
____________________________________________________________________________________________________
convolution2d_4 (Convolution2D) (None, 8, None, None) 136 activation_2[0][0]
____________________________________________________________________________________________________
activation_3 (Activation) (None, 8, None, None) 0 convolution2d_4[0][0]
____________________________________________________________________________________________________
convolution2d_5 (Convolution2D) (None, 3, None, None) 27 activation_3[0][0]
____________________________________________________________________________________________________
activation_4 (Activation) (None, 3, None, None) 0 convolution2d_5[0][0]
____________________________________________________________________________________________________
globalaveragepooling2d_1 (Global (None, 3) 0 activation_4[0][0]
____________________________________________________________________________________________________
activation_5 (Activation) (None, 3) 0 globalaveragepooling2d_1[0][0]
====================================================================================================
Total params: 10,259
Trainable params: 10,259
Non-trainable params: 0
最佳答案
我认为@marcin-możejko 在他的评论中可能有正确的答案。
可能与this bug有关,这是刚刚修复的。和 this patch如果编译过于频繁,可能会警告您。
所以升级到 tf-nightly-gpu-2.0-preview 包可能会解决这个问题。
您是否也遇到过 tf.keras
的问题? .
If I resize all images to the maximum size in the data set it still takes far less time to train the model than training on the variable size input
关于tensorflow - 在 Keras/TensorFlow 中训练一个具有可变大小输入的完全卷积神经网络需要花费不合理的长时间,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41322286/
real adaboost Logit boost discrete adaboost 和 gentle adaboost in train cascade parameter 有什么区别.. -bt
我想为 book crossing 构建训练数据矩阵和测试数据矩阵数据集。但作为 ISBN 代码的图书 ID 可能包含字符。因此,我无法应用此代码(来自 tutorial ): #Create two
我找到了 JavaANPR 库,我想对其进行自定义以读取我所在国家/地区的车牌。 似乎包含的字母表与我们使用的字母表不同 ( http://en.wikipedia.org/wiki/FE-Schri
我有一个信用卡数据集,其中 98% 的交易是非欺诈交易,2% 是欺诈交易。 我一直在尝试在训练和测试拆分之前对多数类别进行欠采样,并在测试集上获得非常好的召回率和精度。 当我仅在训练集上进行欠采样并在
我打算: 在数据集上从头开始训练 NASNet 只重新训练 NASNet 的最后一层(迁移学习) 并比较它们的相对性能。从文档中我看到: keras.applications.nasnet.NASNe
我正在训练用于分割的 uNet 模型。训练模型后,输出全为零,我不明白为什么。 我看到建议我应该使用特定的损失函数,所以我使用了 dice 损失函数。这是因为黑色区域 (0) 比白色区域 (1) 大得
我想为新角色训练我现有的 tesseract 模型。我已经尝试过 上的教程 https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesser
我的机器中有两个 NVidia GPU,但我没有使用它们。 我的机器上运行了三个神经网络训练。当我尝试运行第四个时,脚本出现以下错误: my_user@my_machine:~/my_project/
我想在python的tensorflow中使用稀疏张量进行训练。我找到了很多代码如何做到这一点,但没有一个有效。 这里有一个示例代码来说明我的意思,它会抛出一个错误: import numpy as
我正在训练一个 keras 模型,它的最后一层是单个 sigmoid单元: output = Dense(units=1, activation='sigmoid') 我正在用一些训练数据训练这个模型
所以我需要使用我自己的数据集重新训练 Tiny YOLO。我正在使用的模型可以在这里找到:keras-yolo3 . 我开始训练并遇到多个优化器错误,添加了错误代码以防止混淆。 我注意到即使它应该使用
将 BERT 模型中的标记化范式更改为其他东西是否有意义?也许只是一个简单的单词标记化或字符级标记化? 最佳答案 这是论文“CharacterBERT: Reconciling ELMo and BE
假设我有一个非常简单的神经网络,比如多层感知器。对于每一层,激活函数都是 sigmoid 并且网络是全连接的。 在 TensorFlow 中,这可能是这样定义的: sess = tf.Inte
有没有办法在 PyBrain 中保存和恢复经过训练的神经网络,这样我每次运行脚本时都不必重新训练它? 最佳答案 PyBrain 的神经网络可以使用 python 内置的 pickle/cPickle
我尝试使用 Keras 训练一个对手写数字进行分类的 CNN 模型,但训练的准确度很低(低于 10%)并且误差很大。我尝试了一个简单的神经网络,但没有效果。 这是我的代码。 import tensor
我在 Windows 7 64 位上使用 tesseract 3.0.1。我用一种新语言训练图书馆。 我的示例数据间隔非常好。当我为每个角色的盒子定义坐标时,盒子紧贴角色有多重要?我使用其中一个插件,
如何对由 dropout 产生的许多变薄层进行平均?在测试阶段要使用哪些权重?我真的很困惑这个。因为每个变薄的层都会学习一组不同的权重。那么反向传播是为每个细化网络单独完成的吗?这些细化网络之间的权重
我尝试训练超正方语言。我正在使用 Tess4J 进行 OCR 处理。我使用jTessBoxEditor和SerakTesseractTrainer进行训练操作。准备好训练数据后,我将其放在 Tesse
我正在构建一个 Keras 模型,将数据分类为 3000 个不同的类别,我的训练数据由大量样本组成,因此在用一种热编码对训练输出进行编码后,数据非常大(item_count * 3000 * 的大小)
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 8 年前。 Improve this ques
我是一名优秀的程序员,十分优秀!