- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
执行“大量”任务时,我收到此错误:
Consider scattering large objects ahead of time with client.scatter to reduce scheduler burden and keep data on workers
tornado.application - ERROR - Exception in callback <bound method BokehTornado._keep_alive of <bokeh.server.tornado.BokehTornado object at 0x7f20d25e10b8>>
Traceback (most recent call last):
File "/home/muammar/.local/lib/python3.7/site-packages/tornado/ioloop.py", line 907, in _run
return self.callback()
File "/home/muammar/.local/lib/python3.7/site-packages/bokeh/server/tornado.py", line 542, in _keep_alive
c.send_ping()
File "/home/muammar/.local/lib/python3.7/site-packages/bokeh/server/connection.py", line 80, in send_ping
self._socket.ping(codecs.encode(str(self._ping_count), "utf-8"))
File "/home/muammar/.local/lib/python3.7/site-packages/tornado/websocket.py", line 447, in ping
raise WebSocketClosedError()
tornado.websocket.WebSocketClosedError
tornado.application - ERROR - Exception in callback <bound method BokehTornado._keep_alive of <bokeh.server.tornado.BokehTornado object at 0x7f20d25e10b8>>
Traceback (most recent call last):
File "/home/muammar/.local/lib/python3.7/site-packages/tornado/ioloop.py", line 907, in _run
return self.callback()
File "/home/muammar/.local/lib/python3.7/site-packages/bokeh/server/tornado.py", line 542, in _keep_alive
c.send_ping()
File "/home/muammar/.local/lib/python3.7/site-packages/bokeh/server/connection.py", line 80, in send_ping
self._socket.ping(codecs.encode(str(self._ping_count), "utf-8"))
File "/home/muammar/.local/lib/python3.7/site-packages/tornado/websocket.py", line 447, in ping
raise WebSocketClosedError()
tornado.websocket.WebSocketClosedError
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:52950 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:52964 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:52970 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:52984 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:52986 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53002 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53016 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53018 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53038 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53042 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53048 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53060 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53068 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53072 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53146 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53156 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53170 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53178 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53186 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53188 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53192 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53194 remote=tcp://127.0.0.1:37945>
distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://127.0.0.1:53196 remote=tcp://127.0.0.1:37945>
ClassCreatingTheIssue
中执行我无法访问(我认为)到
client
的地方.只是你有一个想法,我粘贴在调用这些东西的脚本下面:
from dask.distributed import Client, LocalCluster
import sys
sys.path.append('../../')
from mypackage import SomeClass
from mypackage.module2 import SomeClass2
from mypackage.module3 import ClassCreatingTheIssue
def train():
calc = SomeClass(something=SomeClass2(**stuff),
something2=ClassCreatingTheIssue())
calc.train(training_set=images)
if __name__ == '__main__':
cluster = LocalCluster(n_workers=8, threads_per_worker=2)
client = Client(cluster, asyncronous=True)
train()
def get_lt(self, index):
"""Return LT vectors
Parameters
----------
index : int
Index of image.
Returns
-------
_LT : list
Returns a list that maps atomic fingerprints in the images.
"""
_LT = []
for i, group in enumerate(self.fingerprint_map):
if i == index:
for _ in group:
_LT.append(1.)
else:
for _ in group:
_LT.append(0.)
return _LT
client.scatter
在这种情况下?我真的很感激任何帮助!
最佳答案
您使用的是什么版本的 Dask Distributed?我在 1.26,它有警告消息:
/Users/scott/anaconda3/lib/python3.6/site-packages/distributed/worker.py:2791: UserWarning: Large object of size 8.00 MB detected in task graph:
(array([[ 0.02152672, 0.09287627, -0.32135721, .. ... 1.25601994]]),)
Consider scattering large objects ahead of time
with client.scatter to reduce scheduler burden and
keep data on workers
future = client.submit(func, big_data) # bad
big_future = client.scatter(big_data) # good
future = client.submit(func, big_future) # good
% (format_bytes(len(b)), s))
import numpy as np
from distributed import Client
client = Client()
def f(x):
return x.sum()
N = 1_000
x = np.random.randn(N, N)
r1 = client.submit(f, x).result()
x_scattered = client.scatter(x)
r2 = client.submit(f, x_scattered).result()
assert r1 == r2
关于python-3.x - 如何在 Dask 中正确使用 client.scatter,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55251699/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!