- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我对 fold
的输出感到惊讶,我无法想象它在做什么。
我希望 something.fold(0, lambda a,b: a+1)
会返回 something
中的元素数,因为折叠开始于0
并为每个元素添加 1
。
sc.parallelize([1,25,8,4,2]).fold(0,lambda a,b:a+1 )
8
我来自 Scala,其中 fold 就像我所描述的那样工作。那么 fold 应该如何在 pyspark 中工作?谢谢你的想法。
最佳答案
要了解这里发生了什么,让我们看一下 Spark 的 fold
操作的定义。由于您使用的是 PySpark,我将展示代码的 Python 版本,但 Scala 版本表现出完全相同的行为(您也可以 browse the source on GitHub ):
def fold(self, zeroValue, op):
"""
Aggregate the elements of each partition, and then the results for all
the partitions, using a given associative function and a neutral "zero
value."
The function C{op(t1, t2)} is allowed to modify C{t1} and return it
as its result value to avoid object allocation; however, it should not
modify C{t2}.
>>> from operator import add
>>> sc.parallelize([1, 2, 3, 4, 5]).fold(0, add)
15
"""
def func(iterator):
acc = zeroValue
for obj in iterator:
acc = op(obj, acc)
yield acc
vals = self.mapPartitions(func).collect()
return reduce(op, vals, zeroValue)
(对比见 Scala implementation of RDD.fold
)。
Spark 的 fold
操作是先折叠每个分区,然后再折叠结果。问题是空分区被折叠到零元素,因此最终的驱动程序端折叠最终会为 每个 分区折叠一个值,而不是为每个 非空 分区。这意味着 fold
的结果对分区数很敏感:
>>> sc.parallelize([1,25,8,4,2], 100).fold(0,lambda a,b:a+1 )
100
>>> sc.parallelize([1,25,8,4,2], 50).fold(0,lambda a,b:a+1 )
50
>>> sc.parallelize([1,25,8,4,2], 1).fold(0,lambda a,b:a+1 )
1
在最后一种情况下,发生的情况是单个分区被折叠到正确的值,然后该值在驱动程序处与零值折叠以产生 1。
看来Spark的fold()
操作实际上要求fold函数除了关联之外还具有可交换性。实际上,Spark 中还有其他地方会强制执行此要求,例如,混洗分区中元素的顺序在运行中可能是不确定的(参见 SPARK-5750)。
我已打开 Spark JIRA 票证来调查此问题:https://issues.apache.org/jira/browse/SPARK-6416 .
关于apache-spark - pyspark折叠方法输出,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29150202/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!