gpt4 book ai didi

python keras - 预测时间序列,基于相似序列的历史样本很少

转载 作者:行者123 更新时间:2023-12-03 23:47:47 29 4
gpt4 key购买 nike

我正在尝试使用 Keras 构建一个模型,以根据传感器的类型和相同类型传感器的历史数据来预测传感器的时间序列。

下图显示了 3 个时间序列,由 3 个相同类型的传感器生成,绿色虚线是新传感器数据,垂直线是新传感器数据结束的地方。

enter image description here

我曾尝试编写一个 LSTM 网络,该网络对其他传感器的历史数据进行训练,一次提供一个历史数据,但这导致 LSTM 在预测新传感器时考虑传感器的最后一天。

所以我猜我走错了路。根据其他同类时间序列的历史,仅用几个历史样本来预测时间序列的选项有哪些?

任何帮助/引用/视频将不胜感激。

更新:
我想详细说明一下,传感器“分数”(如上图所示)是从随时间收集的一组特征生成的。 IE:

⨍(event_1_count ,event_2_count ,event_3_count ,days_since_last_event_1 ) = 分数

+----------+----+--------------+--------------+--------------+------------------------+
|sensor_id |day |event_1_count |event_2_count |event_3_count |days_since_last_event_1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 1 |0 | 2 | 1 | 0 | 0 |
+----------+----+--------------+--------------+--------------+------------------------+
| 1 |1 | 0 | 10 | 2 | 1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 1 |2 | 0 | 1 | 0 | 2 |
... until last day
+----------+----+--------------+--------------+--------------+------------------------+
| 2 |0 | 2 | 1 | 0 | 0 |
+----------+----+--------------+--------------+--------------+------------------------+
| 2 |1 | 0 | 10 | 2 | 1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 2 |2 | 0 | 1 | 0 | 2 |
... until last day
+----------+----+--------------+--------------+--------------+------------------------+
| 3 |0 | 2 | 1 | 0 | 0 |
+----------+----+--------------+--------------+--------------+------------------------+
| 3 |1 | 0 | 10 | 2 | 1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 3 |2 | 0 | 1 | 0 | 2 |
... until last day

然后以同样的方式收集新数据(绿线),但现在我只有前 3 天
    +----------+----+--------------+--------------+--------------+------------------------+
|sensor_id |day |event_1_count |event_2_count |event_3_count |days_since_last_event_1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 4 |0 | 2 | 1 | 0 | 0 |
+----------+----+--------------+--------------+--------------+------------------------+
| 4 |1 | 0 | 10 | 2 | 1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 4 |2 | 0 | 1 | 0 | 2 |
---END OF DATA---

很明显,我需要考虑新功能。我最初的想法是尝试学习波的“形状”,同时考虑历史特征,并基于该模型预测新传感器数据的形状。

我分享了这个 GoogleColab notebook使用@David 解决方案进行评论

最佳答案

有不同的方法,具体取决于您的确切设置和所需的输出。

版本 A

如果您想拥有一个 LSTM 模型,该模型可以获取大量数据并预测下一步,这里有一个独立的示例。

合成数据与您的图中显示的数据仅略有相似,但我希望它仍然对说明有用。

上图中的预测显示了所有时间序列块都已知的情况,并且对于每个块都预测了下一步。

下面的面板显示了更现实的情况,其中所讨论的时间序列的开始是已知的,其余部分是迭代预测的,一次一个步骤。显然,预测误差可能会随着时间的推移而累积和增长。

single_prediction

# import modules
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import keras
import keras.models
import keras.layers
import sklearn
import sklearn.metrics

# please load auxiliary functions defined below!
# (omitted here for better readability)

# set seed
np.random.seed(42)

# number of time series
n_samples = 5

# number of steps used for prediction
n_steps = 50

# number of epochs for LSTM training
epochs = 100

# create synthetic data
# (see bottom left panel below, very roughly resembling your data)
tab = create_data(n_samples)

# train model without first column
x_train, y_train = prepare_data(tab.iloc[:, 1:], n_steps=n_steps)
model, history = train_model(x_train, y_train, n_steps=n_steps, epochs=epochs)

# predict first column for testing
# (all chunks are known and only on time step is predicted for each)
veo = tab[0].copy().values
y_test, y_pred = predict_all(veo, model)

# predict iteratively
# (first chunk is known and new values are predicted iteratively)
vec = veo.copy()
y_iter = predict_iterative(vec, n_steps, model)

# plot results
plot_single(y_test, [y_pred, y_iter], n_steps)

版本 B

如果您的时间序列的总长度是已知且固定的,并且您想要“自动完成”一个不完整的时间序列(图中的绿色虚线),则同时预测多个值可能更容易、更可靠。

但是,因为对于每个时间序列,您只将起始块作为训练数据(并预测它的其余部分),所以这可能需要更完全已知的时间序列。

尽管如此,因为每个时间序列在训练期间只使用一次(而不是分成许多连续的块),所以训练速度更快,结果看起来也不错。

multi_prediction
# please load auxiliary functions defined below!
# (omitted here for better readability)

# number of time series
n_samples = 10

# create synthetic data
# (see bottom left panel below, very roughly resembling your data)
tab = create_data(n_samples)

# prepare training data
x_train = tab.iloc[:n_steps, 1:].values.T
x_train = x_train.reshape(*x_train.shape, 1)
y_train = tab.iloc[n_steps:, 1:].values.T
print(x_train.shape) # (9, 50, 1) = old shape, 1D time series

# create additional dummy features to demonstrate usage of nD time series input data
# (feature_i = factor_i * score_i, with sum_i factor_i = 1)
feature_factors = [0.3, 0.2, 0.5]
x_train = np.dstack([x_train] + [factor*x_train for factor in feature_factors])
print(x_train.shape) # (9, 50, 4) = new shape, original 1 + 3 new features

# create LSTM which predicts everything beyond n_steps
n_steps_out = len(tab) - n_steps
model, history = train_model(x_train, y_train, n_steps=n_steps, epochs=epochs,
n_steps_out=n_steps_out)

# prepare test data
x_test = tab.iloc[:n_steps, :1].values.T
x_test = x_test.reshape(*x_test.shape, 1)
x_test = np.dstack([x_test] + [factor*x_test for factor in feature_factors])
y_test = tab.iloc[n_steps:, :1].values.T[0]
y_pred = model.predict(x_test)[0]

# plot results
plot_multi(history, tab, y_pred, n_steps)

更新

嗨,Shlomi,感谢您的更新。如果我理解正确,那么您将拥有更多功能,而不是 1D 时间序列,即 nD 时间序列。实际上,这已经包含在模型中(具有部分未定义的 n_features 变量,现在已更正)。我在版本 B 中添加了一个“创建额外的虚拟特征”部分,其中虚拟特征是通过拆分原始一维时间序列来创建的(但也保留原始数据,对应于您的 f(...)=score,这听起来像是经过设计的)应该有用的功能)。然后,我只加了 n_features = x_train.shape[2]在 LSTM 网络设置功能中。在将它们输入网络之前,请确保您的单个特征被正确缩放(例如 [0-1])。当然,预测质量在很大程度上取决于实际数据。

辅助功能
def create_data(n_samples):
# window width for rolling average
window = 10
# position of change in trend
thres = 200
# time period of interest
dates = pd.date_range(start='2020-02-16', end='2020-03-15', freq='H')
# create data frame
tab = pd.DataFrame(index=dates)
lend = len(tab)
lin = np.arange(lend)
# create synthetic time series
for ids in range(n_samples):
trend = 4 * lin - 3 * (lin-thres) * (lin > thres)
# scale to [0, 1] interval (approximately) for easier handling by network
trend = 0.9 * trend / max(trend)
noise = 0.1 * (0.1 + trend) * np.random.randn(lend)
vec = trend + noise
tab[ids] = vec
# compute rolling average to get smoother variation
tab = tab.rolling(window=window).mean().iloc[window:]
return tab


def split_sequence(vec, n_steps=20):
# split sequence into chunks of given size
x_trues, y_trues = [], []
steps = len(vec) - n_steps
for step in range(steps):
ilo = step
iup = step + n_steps
x_true, y_true = vec[ilo:iup], vec[iup]
x_trues.append(x_true)
y_trues.append(y_true)
x_true = np.array(x_trues)
y_true = np.array(y_trues)
return x_true, y_true


def prepare_data(tab, n_steps=20):
# convert data frame with multiple columns into chucks
x_trues, y_trues = [], []
if tab.ndim == 2:
arr = np.atleast_2d(tab).T
else:
arr = np.atleast_2d(tab)
for col in arr:
x_true, y_true = split_sequence(col, n_steps=n_steps)
x_trues.append(x_true)
y_trues.append(y_true)
x_true = np.vstack(x_trues)
x_true = x_true.reshape(*x_true.shape, 1)
y_true = np.hstack(y_trues)
return x_true, y_true


def train_model(x_train, y_train, n_units=50, n_steps=20, epochs=200,
n_steps_out=1):
# get number of features from input data
n_features = x_train.shape[2]
# setup network
# (feel free to use other combination of layers and parameters here)
model = keras.models.Sequential()
model.add(keras.layers.LSTM(n_units, activation='relu',
return_sequences=True,
input_shape=(n_steps, n_features)))
model.add(keras.layers.LSTM(n_units, activation='relu'))
model.add(keras.layers.Dense(n_steps_out))
model.compile(optimizer='adam', loss='mse', metrics=['mse'])
# train network
history = model.fit(x_train, y_train, epochs=epochs,
validation_split=0.1, verbose=1)
return model, history


def predict_all(vec, model):
# split data
x_test, y_test = prepare_data(vec, n_steps=n_steps)
# use trained model to predict all data points from preceeding chunk
y_pred = model.predict(x_test, verbose=1)
y_pred = np.hstack(y_pred)
return y_test, y_pred


def predict_iterative(vec, n_steps, model):
# use last chunk to predict next value, iterate until end is reached
y_iter = vec.copy()
lent = len(y_iter)
steps = lent - n_steps - 1
for step in range(steps):
print(step, steps)
ilo = step
iup = step + n_steps + 1
x_test, y_test = prepare_data(y_iter[ilo:iup], n_steps=n_steps)
y_pred = model.predict(x_test, verbose=0)
y_iter[iup] = y_pred
return y_iter[n_steps:]


def plot_single(y_test, y_plots, n_steps, nrows=2):
# prepare variables for plotting
metric = 'mse'
mima = [min(y_test), max(y_test)]
titles = ['all', 'iterative']
lin = np.arange(-n_steps, len(y_test))
# create figure
fig, axis = plt.subplots(figsize=(16, 9),
nrows=2, ncols=3)
# plot time series
axia = axis[1, 0]
axia.set_title('original data')
tab.plot(ax=axia)
axia.set_xlabel('time')
axia.set_ylabel('value')
# plot network training history
axia = axis[0, 0]
axia.set_title('training history')
axia.plot(history.history[metric], label='train')
axia.plot(history.history['val_'+metric], label='test')
axia.set_xlabel('epoch')
axia.set_ylabel(metric)
axia.set_yscale('log')
plt.legend()
# plot result for "all" and "iterative" prediction
for idy, y_plot in enumerate(y_plots):
# plot true/predicted time series
axia = axis[idy, 1]
axia.set_title(titles[idy])
axia.plot(lin, veo, label='full')
axia.plot(y_test, label='true')
axia.plot(y_plot, label='predicted')
plt.legend()
axia.set_xlabel('time')
axia.set_ylabel('value')
axia.set_ylim(0, 1)
# plot scatter plot of true/predicted data
axia = axis[idy, 2]
r2 = sklearn.metrics.r2_score(y_test, y_plot)
axia.set_title('R2 = %.2f' % r2)
axia.scatter(y_test, y_plot)
axia.plot(mima, mima, color='black')
axia.set_xlabel('true')
axia.set_ylabel('predicted')
plt.tight_layout()
return None


def plot_multi(history, tab, y_pred, n_steps):
# prepare variables for plotting
metric = 'mse'
# create figure
fig, axis = plt.subplots(figsize=(16, 9),
nrows=1, ncols=2, squeeze=False)
# plot network training history
axia = axis[0, 0]
axia.set_title('training history')
axia.plot(history.history[metric], label='train')
axia.plot(history.history['val_'+metric], label='test')
axia.set_xlabel('epoch')
axia.set_ylabel(metric)
axia.set_yscale('log')
plt.legend()
# plot true/predicted time series
axia = axis[0, 1]
axia.plot(tab[0].values, label='true')
axia.plot(range(n_steps, len(tab)), y_pred, label='predicted')
plt.legend()
axia.set_xlabel('time')
axia.set_ylabel('value')
axia.set_ylim(0, 1)
plt.tight_layout()
return None

关于python keras - 预测时间序列,基于相似序列的历史样本很少,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61484189/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com