- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 Keras 构建一个模型,以根据传感器的类型和相同类型传感器的历史数据来预测传感器的时间序列。
下图显示了 3 个时间序列,由 3 个相同类型的传感器生成,绿色虚线是新传感器数据,垂直线是新传感器数据结束的地方。
我曾尝试编写一个 LSTM 网络,该网络对其他传感器的历史数据进行训练,一次提供一个历史数据,但这导致 LSTM 在预测新传感器时考虑传感器的最后一天。
所以我猜我走错了路。根据其他同类时间序列的历史,仅用几个历史样本来预测时间序列的选项有哪些?
任何帮助/引用/视频将不胜感激。
更新:
我想详细说明一下,传感器“分数”(如上图所示)是从随时间收集的一组特征生成的。 IE:
⨍(event_1_count ,event_2_count ,event_3_count ,days_since_last_event_1 ) = 分数
+----------+----+--------------+--------------+--------------+------------------------+
|sensor_id |day |event_1_count |event_2_count |event_3_count |days_since_last_event_1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 1 |0 | 2 | 1 | 0 | 0 |
+----------+----+--------------+--------------+--------------+------------------------+
| 1 |1 | 0 | 10 | 2 | 1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 1 |2 | 0 | 1 | 0 | 2 |
... until last day
+----------+----+--------------+--------------+--------------+------------------------+
| 2 |0 | 2 | 1 | 0 | 0 |
+----------+----+--------------+--------------+--------------+------------------------+
| 2 |1 | 0 | 10 | 2 | 1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 2 |2 | 0 | 1 | 0 | 2 |
... until last day
+----------+----+--------------+--------------+--------------+------------------------+
| 3 |0 | 2 | 1 | 0 | 0 |
+----------+----+--------------+--------------+--------------+------------------------+
| 3 |1 | 0 | 10 | 2 | 1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 3 |2 | 0 | 1 | 0 | 2 |
... until last day
+----------+----+--------------+--------------+--------------+------------------------+
|sensor_id |day |event_1_count |event_2_count |event_3_count |days_since_last_event_1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 4 |0 | 2 | 1 | 0 | 0 |
+----------+----+--------------+--------------+--------------+------------------------+
| 4 |1 | 0 | 10 | 2 | 1 |
+----------+----+--------------+--------------+--------------+------------------------+
| 4 |2 | 0 | 1 | 0 | 2 |
---END OF DATA---
最佳答案
有不同的方法,具体取决于您的确切设置和所需的输出。
版本 A
如果您想拥有一个 LSTM 模型,该模型可以获取大量数据并预测下一步,这里有一个独立的示例。
合成数据与您的图中显示的数据仅略有相似,但我希望它仍然对说明有用。
上图中的预测显示了所有时间序列块都已知的情况,并且对于每个块都预测了下一步。
下面的面板显示了更现实的情况,其中所讨论的时间序列的开始是已知的,其余部分是迭代预测的,一次一个步骤。显然,预测误差可能会随着时间的推移而累积和增长。
# import modules
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import keras
import keras.models
import keras.layers
import sklearn
import sklearn.metrics
# please load auxiliary functions defined below!
# (omitted here for better readability)
# set seed
np.random.seed(42)
# number of time series
n_samples = 5
# number of steps used for prediction
n_steps = 50
# number of epochs for LSTM training
epochs = 100
# create synthetic data
# (see bottom left panel below, very roughly resembling your data)
tab = create_data(n_samples)
# train model without first column
x_train, y_train = prepare_data(tab.iloc[:, 1:], n_steps=n_steps)
model, history = train_model(x_train, y_train, n_steps=n_steps, epochs=epochs)
# predict first column for testing
# (all chunks are known and only on time step is predicted for each)
veo = tab[0].copy().values
y_test, y_pred = predict_all(veo, model)
# predict iteratively
# (first chunk is known and new values are predicted iteratively)
vec = veo.copy()
y_iter = predict_iterative(vec, n_steps, model)
# plot results
plot_single(y_test, [y_pred, y_iter], n_steps)
# please load auxiliary functions defined below!
# (omitted here for better readability)
# number of time series
n_samples = 10
# create synthetic data
# (see bottom left panel below, very roughly resembling your data)
tab = create_data(n_samples)
# prepare training data
x_train = tab.iloc[:n_steps, 1:].values.T
x_train = x_train.reshape(*x_train.shape, 1)
y_train = tab.iloc[n_steps:, 1:].values.T
print(x_train.shape) # (9, 50, 1) = old shape, 1D time series
# create additional dummy features to demonstrate usage of nD time series input data
# (feature_i = factor_i * score_i, with sum_i factor_i = 1)
feature_factors = [0.3, 0.2, 0.5]
x_train = np.dstack([x_train] + [factor*x_train for factor in feature_factors])
print(x_train.shape) # (9, 50, 4) = new shape, original 1 + 3 new features
# create LSTM which predicts everything beyond n_steps
n_steps_out = len(tab) - n_steps
model, history = train_model(x_train, y_train, n_steps=n_steps, epochs=epochs,
n_steps_out=n_steps_out)
# prepare test data
x_test = tab.iloc[:n_steps, :1].values.T
x_test = x_test.reshape(*x_test.shape, 1)
x_test = np.dstack([x_test] + [factor*x_test for factor in feature_factors])
y_test = tab.iloc[n_steps:, :1].values.T[0]
y_pred = model.predict(x_test)[0]
# plot results
plot_multi(history, tab, y_pred, n_steps)
n_features = x_train.shape[2]
在 LSTM 网络设置功能中。在将它们输入网络之前,请确保您的单个特征被正确缩放(例如 [0-1])。当然,预测质量在很大程度上取决于实际数据。
def create_data(n_samples):
# window width for rolling average
window = 10
# position of change in trend
thres = 200
# time period of interest
dates = pd.date_range(start='2020-02-16', end='2020-03-15', freq='H')
# create data frame
tab = pd.DataFrame(index=dates)
lend = len(tab)
lin = np.arange(lend)
# create synthetic time series
for ids in range(n_samples):
trend = 4 * lin - 3 * (lin-thres) * (lin > thres)
# scale to [0, 1] interval (approximately) for easier handling by network
trend = 0.9 * trend / max(trend)
noise = 0.1 * (0.1 + trend) * np.random.randn(lend)
vec = trend + noise
tab[ids] = vec
# compute rolling average to get smoother variation
tab = tab.rolling(window=window).mean().iloc[window:]
return tab
def split_sequence(vec, n_steps=20):
# split sequence into chunks of given size
x_trues, y_trues = [], []
steps = len(vec) - n_steps
for step in range(steps):
ilo = step
iup = step + n_steps
x_true, y_true = vec[ilo:iup], vec[iup]
x_trues.append(x_true)
y_trues.append(y_true)
x_true = np.array(x_trues)
y_true = np.array(y_trues)
return x_true, y_true
def prepare_data(tab, n_steps=20):
# convert data frame with multiple columns into chucks
x_trues, y_trues = [], []
if tab.ndim == 2:
arr = np.atleast_2d(tab).T
else:
arr = np.atleast_2d(tab)
for col in arr:
x_true, y_true = split_sequence(col, n_steps=n_steps)
x_trues.append(x_true)
y_trues.append(y_true)
x_true = np.vstack(x_trues)
x_true = x_true.reshape(*x_true.shape, 1)
y_true = np.hstack(y_trues)
return x_true, y_true
def train_model(x_train, y_train, n_units=50, n_steps=20, epochs=200,
n_steps_out=1):
# get number of features from input data
n_features = x_train.shape[2]
# setup network
# (feel free to use other combination of layers and parameters here)
model = keras.models.Sequential()
model.add(keras.layers.LSTM(n_units, activation='relu',
return_sequences=True,
input_shape=(n_steps, n_features)))
model.add(keras.layers.LSTM(n_units, activation='relu'))
model.add(keras.layers.Dense(n_steps_out))
model.compile(optimizer='adam', loss='mse', metrics=['mse'])
# train network
history = model.fit(x_train, y_train, epochs=epochs,
validation_split=0.1, verbose=1)
return model, history
def predict_all(vec, model):
# split data
x_test, y_test = prepare_data(vec, n_steps=n_steps)
# use trained model to predict all data points from preceeding chunk
y_pred = model.predict(x_test, verbose=1)
y_pred = np.hstack(y_pred)
return y_test, y_pred
def predict_iterative(vec, n_steps, model):
# use last chunk to predict next value, iterate until end is reached
y_iter = vec.copy()
lent = len(y_iter)
steps = lent - n_steps - 1
for step in range(steps):
print(step, steps)
ilo = step
iup = step + n_steps + 1
x_test, y_test = prepare_data(y_iter[ilo:iup], n_steps=n_steps)
y_pred = model.predict(x_test, verbose=0)
y_iter[iup] = y_pred
return y_iter[n_steps:]
def plot_single(y_test, y_plots, n_steps, nrows=2):
# prepare variables for plotting
metric = 'mse'
mima = [min(y_test), max(y_test)]
titles = ['all', 'iterative']
lin = np.arange(-n_steps, len(y_test))
# create figure
fig, axis = plt.subplots(figsize=(16, 9),
nrows=2, ncols=3)
# plot time series
axia = axis[1, 0]
axia.set_title('original data')
tab.plot(ax=axia)
axia.set_xlabel('time')
axia.set_ylabel('value')
# plot network training history
axia = axis[0, 0]
axia.set_title('training history')
axia.plot(history.history[metric], label='train')
axia.plot(history.history['val_'+metric], label='test')
axia.set_xlabel('epoch')
axia.set_ylabel(metric)
axia.set_yscale('log')
plt.legend()
# plot result for "all" and "iterative" prediction
for idy, y_plot in enumerate(y_plots):
# plot true/predicted time series
axia = axis[idy, 1]
axia.set_title(titles[idy])
axia.plot(lin, veo, label='full')
axia.plot(y_test, label='true')
axia.plot(y_plot, label='predicted')
plt.legend()
axia.set_xlabel('time')
axia.set_ylabel('value')
axia.set_ylim(0, 1)
# plot scatter plot of true/predicted data
axia = axis[idy, 2]
r2 = sklearn.metrics.r2_score(y_test, y_plot)
axia.set_title('R2 = %.2f' % r2)
axia.scatter(y_test, y_plot)
axia.plot(mima, mima, color='black')
axia.set_xlabel('true')
axia.set_ylabel('predicted')
plt.tight_layout()
return None
def plot_multi(history, tab, y_pred, n_steps):
# prepare variables for plotting
metric = 'mse'
# create figure
fig, axis = plt.subplots(figsize=(16, 9),
nrows=1, ncols=2, squeeze=False)
# plot network training history
axia = axis[0, 0]
axia.set_title('training history')
axia.plot(history.history[metric], label='train')
axia.plot(history.history['val_'+metric], label='test')
axia.set_xlabel('epoch')
axia.set_ylabel(metric)
axia.set_yscale('log')
plt.legend()
# plot true/predicted time series
axia = axis[0, 1]
axia.plot(tab[0].values, label='true')
axia.plot(range(n_steps, len(tab)), y_pred, label='predicted')
plt.legend()
axia.set_xlabel('time')
axia.set_ylabel('value')
axia.set_ylim(0, 1)
plt.tight_layout()
return None
关于python keras - 预测时间序列,基于相似序列的历史样本很少,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61484189/
您好,我是使用 xampp 的 PHPmyadmin 新手,没有 MYSQL 背景。当我喜欢研究它是如何工作的时,我的脑海中浮现出一个想法,它让我一周都无法休眠,因为我似乎无法弄清楚如何使用 MIN(
Go docs say (强调): Programs using times should typically store and pass them as values, not pointers.
我有一组用户在 8 月 1 日有一个条目。我想找到在 8 月 1 日有条目但在 8 月 2 日没有做任何事情的用户。 现在是 10 月,所以事件已经过去很久了。 我有限的知识说: SELECT * F
我有以下代码,主要编码和取消编码时间结构。这是代码 package main import ( "fmt" "time" "encoding/json" ) type chec
您能详细解释一下“用户 CPU 时间”和“系统 CPU 时间”吗?我读了很多,但我不太理解。 最佳答案 区别在于时间花在用户空间还是内核空间。用户 CPU 时间是处理器运行程序代码(或库中的代码)所花
应用程序不计算东西,但做输入/输出、读取文件、使用网络。我希望探查器显示它。 我希望像 callgrind 中的东西一样,在每个问题中调用 clock_gettime。 或者像 oprofile 那样
目前我的 web 应用程序接收 websocket 数据来触发操作。 这会在页面重新加载时中断,因此我需要一个能够触发特定事件的客户端解决方案。 这个想法可行吗? 假设你有 TimeX = curre
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我有一个 Instant (org.joda.time.Instant) 的实例,我在一些 api 响应中得到它。我有另一个来自 (java.time.Instant) 的实例,这是我从其他调用中获得
如何集成功能 f(y) w.r.t 时间;即 'y'是一个包含 3000 个值和值 time(t) 的数组从 1 到 3000 不等。所以,在整合 f(y) 后我需要 3000 个值. 积分将是不确定
可以通过 CLI 创建命名空间,但是如何使用 Java SDK 来创建命名空间? 最佳答案 它以编程方式通过 gRPC API 完成由服务公开。 在 Java 中,生成的 gRPC 客户端可以通过 W
我有一个函数,它接受 2 组日期(开始日期和结束日期),这些日期将用于我的匹配引擎 我必须知道start_date1和end_date1是否在start_date2和end_date2内 快进:当我在
我想从 Python 脚本运行“time”unix 命令,以计算非 Python 应用程序的执行时间。我会使用 os.system 方法。有什么方法可以在Python中保存这个输出吗?我的目标是多次运
我正在寻找一种“漂亮的数字”算法来确定日期/时间值轴上的标签。我熟悉 Paul Heckbert's Nice Numbers algorithm . 我有一个在 X 轴上显示时间/日期的图,用户可以
在 PowerShell 中,您可以格式化日期以返回当前小时,如下所示: Get-Date -UFormat %H 您可以像这样在 UTC 中获取日期字符串: $dateNow = Get-Date
我正在尝试使用 Javascript 向父子窗口添加一些页面加载检查功能。 我的目标是“从父窗口”检测,每次子窗口完全加载然后执行一些代码。 我在父窗口中使用以下代码示例: childPage=wi
我正在尝试设置此 FFmpeg 命令的 drawtext 何时开始,我尝试使用 start_number 但看起来它不会成功。 ffmpeg -i 1.mp4 -acodec aac -keyint_
我收到了一个 Excel (2010) 电子表格,它基本上是一个文本转储。 单元格 - J8 具有以下信息 2014 年 2 月 4 日星期二 00:08:06 EST 单元格 - L8 具有以下信息
我收到的原始数据包含一列具有以下日期和时间戳格式的数据: 2014 年 3 月 31 日凌晨 3:38 单元格的格式并不一致,因为有些单元格有单个空格,而另一些单元格中有两个或三个字符之间的空格。所以
我想知道是否有办法在我的 Grails 应用程序顶部显示版本和构建日期。 编辑:我应该说我正在寻找构建应用程序的日期/时间。 最佳答案 在您的主模板中,或任何地方。 Server version:
我是一名优秀的程序员,十分优秀!