triggered tf.function retracing. Tracing is expensive"-6ren"> triggered tf.function retracing. Tracing is expensive"-我认为这个错误来自形状问题,但我不知道在哪里。完整的错误消息建议执行以下操作: Also, tf.function has experimental_relax_shapes=True option -6ren">
gpt4 book ai didi

python - tensorflow 2 : Getting "WARNING:tensorflow:9 out of the last 9 calls to triggered tf.function retracing. Tracing is expensive"

转载 作者:行者123 更新时间:2023-12-03 23:47:35 26 4
gpt4 key购买 nike

我认为这个错误来自形状问题,但我不知道在哪里。完整的错误消息建议执行以下操作:

Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing.



当我在函数装饰器中输入这个参数时,它确实起作用了。
@tf.function(experimental_relax_shapes=True)

原因可能是什么?这是完整的代码:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
print(f'Tensorflow version {tf.__version__}')
from tensorflow import keras
from tensorflow.keras.layers import Dense, Conv1D, GlobalAveragePooling1D, Embedding
import tensorflow_datasets as tfds
from tensorflow.keras.models import Model

(train_data, test_data), info = tfds.load('imdb_reviews/subwords8k',
split=[tfds.Split.TRAIN, tfds.Split.TEST],
as_supervised=True, with_info=True)

padded_shapes = ([None], ())

train_dataset = train_data.shuffle(25000).\
padded_batch(padded_shapes=padded_shapes, batch_size=16)
test_dataset = test_data.shuffle(25000).\
padded_batch(padded_shapes=padded_shapes, batch_size=16)

n_words = info.features['text'].encoder.vocab_size


class ConvModel(Model):
def __init__(self):
super(ConvModel, self).__init__()
self.embe = Embedding(n_words, output_dim=16)
self.conv = Conv1D(32, kernel_size=6, activation='elu')
self.glob = GlobalAveragePooling1D()
self.dens = Dense(2)

def call(self, x, training=None, mask=None):
x = self.embe(x)
x = self.conv(x)
x = self.glob(x)
x = self.dens(x)
return x


conv = ConvModel()

conv(next(iter(train_dataset))[0])

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

train_loss = tf.keras.metrics.Mean()
test_loss = tf.keras.metrics.Mean()

train_acc = tf.keras.metrics.CategoricalAccuracy()
test_acc = tf.keras.metrics.CategoricalAccuracy()

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)


@tf.function
def train_step(inputs, labels):
with tf.GradientTape() as tape:
logits = conv(inputs, training=True)
loss = loss_object(labels, logits)
train_loss(loss)
train_acc(logits, labels)

gradients = tape.gradient(loss, conv.trainable_variables)
optimizer.apply_gradients(zip(gradients, conv.trainable_variables))


@tf.function
def test_step(inputs, labels):
logits = conv(inputs, training=False)
loss = loss_object(labels, logits)
test_loss(loss)
test_acc(logits, labels)


def learn():
train_loss.reset_states()
test_loss.reset_states()
train_acc.reset_states()
test_acc.reset_states()

for text, target in train_dataset:
train_step(inputs=text, labels=target)

for text, target in test_dataset:
test_step(inputs=text, labels=target)


def main(epochs=2):
for epoch in tf.range(1, epochs + 1):
learn()
template = 'TRAIN LOSS {:>5.3f} TRAIN ACC {:.2f} TEST LOSS {:>5.3f} TEST ACC {:.2f}'

print(template.format(
train_loss.result(),
train_acc.result(),
test_loss.result(),
test_acc.result()
))

if __name__ == '__main__':
main(epochs=1)

最佳答案

TF/DR:此错误的根本原因是 train_data 的形状发生了变化这因批次而异。修复 train_data 的大小/形状解决此跟踪警告。我更改了以下行,然后一切都按预期进行。完整要点是 here

padded_shapes = ([9000], ())#None.
细节:
如警告消息中所述

WARNING:tensorflow:10 out of the last 11 calls to <function train_stepat 0x7f4825f6d400> triggered tf.function retracing. Tracing isexpensive and the excessive number of tracings could be due to (1)creating @tf.function repeatedly in a loop, (2) passing tensors withdifferent shapes, (3) passing Python objects instead of tensors. For(1), please define your @tf.function outside of the loop. For (2),@tf.function has experimental_relax_shapes=True option that relaxesargument shapes that can avoid unnecessary retracing.


由于警告消息中提到的三个原因,会发生这种回溯警告。原因 (1) 不是根本原因,因为 @tf.function 不是在循环中调用的,原因 (3) 也不是根本原因,因为 train_step 的两个参数和 test_step是张量对象。所以根本原因是警告中提到的原因(2)。
当我打印 train_data 的尺寸时,它打印了不同的尺寸。所以我试着垫 train_data所以所有批次的形状都是相同的。
 padded_shapes = ([9000], ())#None.  # this line throws tracing error as the shape of text is varying for each step in an epoch.
# as the data size is varying, tf.function will start retracing it
# For the demonstration, I used 9000 as max length, but please change it accordingly

关于python - tensorflow 2 : Getting "WARNING:tensorflow:9 out of the last 9 calls to <function> triggered tf.function retracing. Tracing is expensive",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61647404/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com