- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个功能 findMaxEval
我以以下方式调用:eMax0,var0=findMaxEval(np.diag(eVal0),q,bWidth=.01)
哪里np.diag(eVal0)
是一个形状为 (1000,)
的 ndarray , q
是一个数字 (10)。findMaxEval
具有以下定义:
def findMaxEval(eVal,q,bWidth):
out=minimize(lambda *x:errPDFs(*x),.5,args= (eVal,q,bWidth),bounds=((1E-5,1-1E-5),))
if out['success']:var=out['x'][0]
else:var=1
eMax=var*(1+(1./q)**.5)**2
return eMax,var
此函数试图最小化
errPDFs
其定义如下:
def errPDFs(var,eVal,q,bWidth,pts=1000):
pdf0=mpPDF(var,q,pts)
pdf1=fitKDE(eVal,bWidth,x=pdf0.index.values)
sse=np.sum((pdf1-pdf0)**2)
return sse
var
是我在
findMaxEval
中传递的数字函数在
minimize
,初始值为 0.5。
mpPDF
和
fitKDE
定义为:
def mpPDF(var,q,pts):
eMin,eMax=var*(1-(1./q)**.5)**2,var*(1+(1./q)**.5)**2
eVal=np.linspace(eMin,eMax,pts)
pdf=q/(2*np.pi*var*eVal)*((eMax-eVal)*(eVal-eMin))**.5
pdf=pd.Series(pdf,index=eVal)
return pdf
def fitKDE(obs,bWidth=.25,kernel='gaussian',x=None):
if len(obs.shape)==1:obs=obs.reshape(-1,1)
kde=KernelDensity(kernel=kernel,bandwidth=bWidth).fit(obs)
if x is None:x=np.unique(obs).reshape(-1,1)
if len(x.shape)==1:x=x.reshape(-1,1)
logProb=kde.score_samples(x) # log(density)
pdf=pd.Series(np.exp(logProb),index=x.flatten())
return pdf
当我调用
findMaxEval
(描述中的第一行),我收到以下错误:
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
<ipython-input-25-abd7cf64e843> in <module>
----> 1 eMax0,var0=findMaxEval(np.diag(eVal0),q,bWidth=.01)
2 nFacts0=eVal0.shape[0]-np.diag(eVal0)[::-1].searchsorted(eMax0)
<ipython-input-24-f44a1e9d84b1> in findMaxEval(eVal, q, bWidth)
1 def findMaxEval(eVal,q,bWidth):
2 # Find max random eVal by fitting Marcenko’s dist
----> 3 out=minimize(lambda *x:errPDFs(*x),.5,args= (eVal,q,bWidth),bounds=((1E-5,1-1E-5),))
4 if out['success']:var=out['x'][0]
5 else:var=1
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/_minimize.py in minimize(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)
598 return _minimize_neldermead(fun, x0, args, callback, **options)
599 elif meth == 'powell':
--> 600 return _minimize_powell(fun, x0, args, callback, **options)
601 elif meth == 'cg':
602 return _minimize_cg(fun, x0, args, jac, callback, **options)
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/lbfgsb.py in _minimize_lbfgsb(fun, x0, args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint, callback, maxls, **unknown_options)
333
334 while 1:
--> 335 # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \
336 _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr,
337 pgtol, wa, iwa, task, iprint, csave, lsave,
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/lbfgsb.py in func_and_grad(x)
278 # unbounded variables must use None, not +-inf, for optimizer to work properly
279 bounds = [(None if l == -np.inf else l, None if u == np.inf else u) for l, u in bounds]
--> 280
281 if disp is not None:
282 if disp == 0:
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/optimize.py in function_wrapper(*wrapper_args)
324
325 def function_wrapper(*wrapper_args):
--> 326 ncalls[0] += 1
327 return function(*(wrapper_args + args))
328
<ipython-input-24-f44a1e9d84b1> in <lambda>(*x)
1 def findMaxEval(eVal,q,bWidth):
2 # Find max random eVal by fitting Marcenko’s dist
----> 3 out=minimize(lambda *x:errPDFs(*x),.5,args= (eVal,q,bWidth),bounds=((1E-5,1-1E-5),))
4 if out['success']:var=out['x'][0]
5 else:var=1
<ipython-input-23-24070a331535> in errPDFs(var, eVal, q, bWidth, pts)
1 def errPDFs(var,eVal,q,bWidth,pts=1000):
2 # Fit error
----> 3 pdf0=mpPDF(var,q,pts) # theoretical pdf
4 pdf1=fitKDE(eVal,bWidth,x=pdf0.index.values) # empirical pdf
5 sse=np.sum((pdf1-pdf0)**2)
<ipython-input-17-565d70018af2> in mpPDF(var, q, pts)
10 eVal=np.linspace(eMin,eMax,pts)
11 pdf=q/(2*np.pi*var*eVal)*((eMax-eVal)*(eVal-eMin))**.5
---> 12 pdf=pd.Series(pdf,index=eVal)
13 return pdf
/opt/anaconda3/lib/python3.7/site-packages/pandas/core/series.py in __init__(self, data, index, dtype, name, copy, fastpath)
312
313 def _init_dict(self, data, index=None, dtype=None):
--> 314 """
315 Derive the "_data" and "index" attributes of a new Series from a
316 dictionary input.
/opt/anaconda3/lib/python3.7/site-packages/pandas/core/internals/construction.py in sanitize_array(data, index, dtype, copy, raise_cast_failure)
Exception: Data must be 1-dimensional
我不明白什么应该是一维的。
np.diag(eVal0)
形状
(1000,)
.
最佳答案
6/29 更新......我让它以这种方式运行,这很奇怪,因为它是同一件事,一定是库中的一个错误,或者像这样明确地将其转换为所需的精确格式:
import numpy as np
import pandas as pd
from scipy.optimize import minimize
from sklearn.neighbors import KernelDensity
def findMaxEval(eVal, q, bWidth):
bnds = ((float(1e5/10000000000), float(0.99999*-1)),)
print(bnds)
out = minimize(lambda *x: errPDFs(*x), .5, args=(eVal, q, bWidth), bounds=bnds)
if out['success']: var = out['x'][0]
else: var = 1
eMax = var*(1+(1./q)**.5)**2
return eMax, var
def errPDFs(var, eVal, q, bWidth, pts = 1000):
pdf0 = mpPDF(var, q, pts)
pdf1 = fitKDE(eVal, bWidth, x=pdf0.index.values)
sse=np.sum((pdf1-pdf0)**2)
return sse
def mpPDF(var, q, pts):
eMin, eMax=var*(1-(1./q)**.5)**2,var*(1+(1./q)**.5)**2
eVal = np.linspace(eMin, eMax, pts)
pdf = q/(2*np.pi*var*eVal)*((eMax-eVal)*(eVal-eMin))**.5
pdf = pd.Series(pdf, index=eVal)
return pdf
def fitKDE(obs, bWidth = .25, kernel='gaussian', x=None):
if len(obs.shape) == 1: obs = obs.reshape(-1, 1)
kde=KernelDensity(kernel=kernel, bandwidth=bWidth).fit(obs)
if x is None: x = np.unique(obs).reshape(-1, 1)
if len(x.shape) == 1: x = x.reshape(-1, 1)
logProb = kde.score_samples(x)
pdf=pd.Series(np.exp(logProb), index=x.flatten())
return pdf
eMax0, var0 = findMaxEval((1000,), 10, bWidth=.01)
print(eMax0)
print(var0)
以下是 PyCharm 社区中 Macbook 的更新输出,Python 版本 3.8.1:
关于Python 异常 : Data must be 1-dimensional,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62535163/
只是想知道这些结构之间有什么区别(text、data、rodata、bss 等)在链接描述文件中: .data : { *(.data) } .data : { *(.data*) }
Data 定义为其核心功能之一 gfoldl : gfoldl :: (Data a) => (forall d b. Data d => c (d -> b) -> d -> c b)
以下之间有什么区别:data-sly-use、data-sly-resource、data-sly-include 和 数据-sly-模板?我正在阅读 Sightly AEM 上的文档,我非常困惑。
我有一个 Spring Boot、Spring Data JPA (hibernate) Web 应用程序,并且想引入文本搜索功能。 我理解以下内容 hibernate search 或 spring
我不知道我的代码有什么问题。我读了其他有同样问题的人的一些问题,但没有找到答案。当我尝试编译时出现以下错误: ||In function 'main':| |35|error: expected ex
我不太确定为什么会收到此错误或其含义。我的数据框称为“数据”。 library(dplyr) data %>% filter(Info==1, Male==1) %>% lm(CFL_
我一直在 GitHub 等更现代的网站上看到这些属性,它们似乎总是与自定义的弹出窗口一致,如 title 属性。 Option 1 Option 2 Option 3 Option 4 我在 HTML
如何用 iCloud Core Data 替换我现有的 Core Data?这是我的持久商店协调员: lazy var persistentStoreCoordinator: NSPersistent
我一直在 GitHub 等更现代的网站上看到这些属性,它们似乎总是与自定义的弹出窗口一致,如 title 属性。 Option 1 Option 2 Option 3 Option 4 我在 HTML
我正在通过 this project 在 Android 上摆弄 node.js ,我需要一种方法将 js 文件部署到私有(private)目录(以隐藏源代码,防止用户篡改),该目录也物理存在于文件系
大家好我有点沮丧,所以我希望得到一些帮助。我的项目在 SwiftUI 中。我想使用图像选择器将图像保存到 Core Data。我实现了让 ImagePicker 工作,但我正在努力转换 Image -
我有以下数据和代码: mydf grp categ condition value 1 A X P 2 2 B X P 5
我一直在努力解决这个问题,但我根本找不到任何解决问题的方法。希望这里有人可以提供帮助。 我正在尝试为具有以下结构的某些数据创建个人选择矩阵: # A tibble: 2,152 x 32 a
我了解 Data.Map.Lazy 和 Data.Map.Strict 是不同的。但是,当您导入 Data.Map 时,您究竟导入了什么:严格的、惰性的还是两者的组合? 最佳答案 懒人。看着docs
我正在开发一个 C 程序,用于从 BerkeleyDB DBTree 数据库中提取数据值与特定模式匹配的记录。我创建数据库,打开它,将键的 DBT 和数据的另一个 DBT 清零,将 DBT 标志设置为
所以我有以下成员(member)历史表 User_ID | Start date | End Date | Type(0-7) | ---------------------------
随着最近推出的包dataframe ,我认为是时候正确地对各种数据结构进行基准测试,并突出每种数据结构的优势。我不是每个人的不同优势的专家,所以我的问题是,我们应该如何对它们进行基准测试。 我尝试过的
我有来自 API 的数据,但无法将数组中的数据设置为 vue.js 中的 this.data这是来自 API 的数据(JSON) 你能告诉我这个语法吗 {"id":1613, "name_org":"
在 Vue.js到目前为止,我已经找到了两种定义数据的方法:data: {} 和 data() { return; }. data: { defaultLayout: 'default' }
我正在研究Spring Data Rest Services,并在自定义拦截器中遇到一些问题。之前我使用spring-data-rest-webmvc 2.2.0并以以下方式添加了拦截器。 publi
我是一名优秀的程序员,十分优秀!