- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用来自 here 的输入数据(见第 3.1 节)。
我正在尝试使用 scikit-learn 重现它们的协方差矩阵、特征值和特征向量。但是,我无法重现数据源中显示的结果。我也在别处看到过这个输入数据,但我无法辨别这是 scikit-learn、我的步骤还是数据源的问题。
data = np.array([[2.5,2.4],
[0.5,0.7],
[2.2,2.9],
[1.9,2.2],
[3.1,3.0],
[2.3,2.7],
[2.0,1.6],
[1.0,1.1],
[1.5,1.6],
[1.1,0.9],
])
centered_data = data-data.mean(axis=0)
pca = PCA()
pca.fit(centered_data)
print(pca.get_covariance()) #Covariance Matrix
array([[ 0.5549, 0.5539],
[ 0.5539, 0.6449]])
print(pca.explained_variance_ratio_) #Eigenvalues (normalized)
[ 0.96318131 0.03681869]
print(pca.components_) #Eigenvectors
[[-0.6778734 -0.73517866]
[ 0.73517866 -0.6778734 ]]
print(pca.transform(centered_data)) #Projections
array([[-0.82797019, 0.17511531],
[ 1.77758033, -0.14285723],
[-0.99219749, -0.38437499],
[-0.27421042, -0.13041721],
[-1.67580142, 0.20949846],
[-0.9129491 , -0.17528244],
[ 0.09910944, 0.3498247 ],
[ 1.14457216, -0.04641726],
[ 0.43804614, -0.01776463],
[ 1.22382056, 0.16267529]])
最佳答案
此数据的正确协方差矩阵:
numpy.cov(data.transpose())
array([[ 0.61655556, 0.61544444],
[ 0.61544444, 0.71655556]])
numpy.cov(data.transpose(), bias=1)
array([[ 0.5549, 0.5539],
[ 0.5539, 0.6449]])
centered_data
。
numpy.linalg.eig(numpy.cov(data.transpose()))
(array([ 0.0490834 , 1.28402771]),
array([[-0.73517866, -0.6778734 ],
[ 0.6778734 , -0.73517866]]))
(array([ 0.04417506, 1.15562494]), ...
pca.explained_variance_ratio_
的名称所示,这些不是特征值。他们是比例。如果我们采用(有偏的、低估的)特征值,并将它们归一化为总和为 1,我们得到
s/sum(s)
array([ 0.03681869, 0.96318131])
pca.transform
方法显然不适用缩放。恕我直言,在使用 PCA 时,缩放每个组件以具有单位方差也很常见。这显然不适用于此输出。然后结果将是(两列交换,我没有费心去改变这个)
s, e = numpy.linalg.eig(numpy.cov(data.transpose()))
o=numpy.argsort(s)[::-1]
(data-mean).dot(e[:,o]) / numpy.sqrt(s[o])
array([[-0.73068047, -0.79041795],
[ 1.56870773, 0.64481466],
[-0.87561043, 1.73495337],
[-0.24198963, 0.58866414],
[-1.47888824, -0.94561319],
[-0.80567404, 0.79117236],
[ 0.08746369, -1.57900372],
[ 1.01008049, 0.20951358],
[ 0.38657401, 0.08018421],
[ 1.08001688, -0.73426743]])
numpy
中只有三行,因此您不需要为此使用函数。)
numpy.diag(s[o])
。但也有人可能会争辩说,通过应用缩放,我“丢失”了方差信息,否则会保留这些信息。
scipy
使用了错误的(有偏差的)协方差。
numpy
是正确的。
1/n
和无偏见的
1/(n-1)
之间的差异最终变得可以忽略不计。但这种差异实际上是零 CPU 成本,因此您不妨使用无偏方差估计。
关于Scikit-Learn PCA,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27699545/
来自文档: sklearn.preprocessing.MinMaxScaler.min_ : ndarray, shape (n_features,) Per feature adjustment
这是我的数据:(我重置了索引。日期应该是索引) Date A B C D 0 2013-10-07 -0.002
我正在构建一个分类器,通过贷款俱乐部数据,选择最好的 X 笔贷款。我训练了一个随机森林,并创建了通常的 ROC 曲线、混淆矩阵等。 混淆矩阵将分类器的预测(森林中树木的多数预测)作为参数。但是,我希望
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我有一个预定义的决策树,它是根据基于知识的拆分构建的,我想用它来进行预测。我可以尝试从头开始实现决策树分类器,但那样我就无法在 Scikit 函数中使用 predict 等内置函数。有没有办法将我的树
我正在使用随机森林解决分类问题。为此,我决定使用 Python 库 scikit-learn。但我对随机森林算法和这个工具都很陌生。我的数据包含许多因子变量。我用谷歌搜索,发现像我们在线性回归中所做的
我使用 Keras 回归器对数据进行回归拟合。我使用 Scikit-learn wrapper 和 Pipeline 来首先标准化数据,然后将其拟合到 Keras 回归器上。有点像这样: from s
在 scikit-learn ,有一个 的概念评分函数 .如果我们有一些预测标签和真实标签,我们可以通过调用 scoring(y_true, y_predict) 来获得分数。 .这种评分函数的一个例
我知道 train_test_split 方法将数据集拆分为随机训练和测试子集。并且使用 random_state=int 可以确保每次调用该方法时我们对该数据集都有相同的拆分。 我的问题略有不同。
我正在使用 scikit-learn 0.18.dev0。我知道之前有人问过完全相同的问题 here .我尝试了那里提供的答案,但出现以下错误 >>> def mydist(x, y): ...
我试图在 scikit-learn 中结合递归特征消除和网格搜索。正如您从下面的代码(有效)中看到的那样,我能够从网格搜索中获得最佳估计量,然后将该估计量传递给 RFECV。但是,我宁愿先进行 RFE
我是一名优秀的程序员,十分优秀!