gpt4 book ai didi

image-processing - RANSAC算法

转载 作者:行者123 更新时间:2023-12-03 23:27:10 25 4
gpt4 key购买 nike

有人可以告诉我如何使用 RANSAC 算法在具有一定重叠部分的两幅图像中选择共同特征点吗?问题来自基于特征的图像拼接。
alt text
alt text

最佳答案

几年前我实现了一个图像拼接器。维基百科上关于 RANSAC 的文章很好地描述了一般算法。

当使用 RANSAC 进行基于特征的图像匹配时,您想要的是找到最能将第一幅图像转换为第二幅图像的变换。这将是维基百科文章中描述的模型。

如果您已经获得了两张图像的特征,并且发现第一张图像中的哪些特征与第二张图像中的哪些特征最匹配,那么 RANSAC 将像这样使用。

The input to the algorithm is:
n - the number of random points to pick every iteration in order to create the transform. I chose n = 3 in my implementation.
k - the number of iterations to run
t - the threshold for the square distance for a point to be considered as a match
d - the number of points that need to be matched for the transform to be valid
image1_points and image2_points - two arrays of the same size with points. Assumes that image1_points[x] is best mapped to image2_points[x] accodring to the computed features.

best_model = null
best_error = Inf
for i = 0:k
rand_indices = n random integers from 0:num_points
base_points = image1_points[rand_indices]
input_points = image2_points[rand_indices]
maybe_model = find best transform from input_points -> base_points

consensus_set = 0
total_error = 0
for i = 0:num_points
error = square distance of the difference between image2_points[i] transformed by maybe_model and image1_points[i]
if error < t
consensus_set += 1
total_error += error

if consensus_set > d && total_error < best_error
best_model = maybe_model
best_error = total_error

最终结果是将 image2 中的点最好地转换为 image1 的变换,这正是您在拼接时想要的。

关于image-processing - RANSAC算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/4655334/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com