gpt4 book ai didi

neural-network - Resnet-18 作为 Faster R-CNN 的主干

转载 作者:行者123 更新时间:2023-12-03 23:21:02 25 4
gpt4 key购买 nike

我用 pytorch 编码,我想使用 resnet-18 作为 Faster R-RCNN 的主干。当我打印 resnet18 的结构时,这是输出:

>>import torch
>>import torchvision
>>import numpy as np
>>import torchvision.models as models

>>resnet18 = models.resnet18(pretrained=False)
>>print(resnet18)


ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer2): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer3): Sequential(
(0): BasicBlock(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer4): Sequential(
(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=512, out_features=1000, bias=True)
)

我的问题是,直到哪一层是特征提取器? AdaptiveAvgPool2d 应该是 Faster R-CNN 的主干的一部分吗?

this toturial 中,展示了如何用任意主干训练 Mask R-CNN,我想用 Faster R-CNN 做同样的事情并用 resnet-18 训练一个 Faster R-CNN,但直到哪一层应该是特征提取器让我感到困惑。

我知道如何使用 resnet+Feature Pyramid Network 作为主干,我的问题是关于 resent。

最佳答案

如果我们想使用自适应平均池化的输出,我们对不同的 Resnet 使用此代码:

# backbone
if backbone_name == 'resnet_18':
resnet_net = torchvision.models.resnet18(pretrained=True)
modules = list(resnet_net.children())[:-1]
backbone = nn.Sequential(*modules)
backbone.out_channels = 512
elif backbone_name == 'resnet_34':
resnet_net = torchvision.models.resnet34(pretrained=True)
modules = list(resnet_net.children())[:-1]
backbone = nn.Sequential(*modules)
backbone.out_channels = 512
elif backbone_name == 'resnet_50':
resnet_net = torchvision.models.resnet50(pretrained=True)
modules = list(resnet_net.children())[:-1]
backbone = nn.Sequential(*modules)
backbone.out_channels = 2048
elif backbone_name == 'resnet_101':
resnet_net = torchvision.models.resnet101(pretrained=True)
modules = list(resnet_net.children())[:-1]
backbone = nn.Sequential(*modules)
backbone.out_channels = 2048
elif backbone_name == 'resnet_152':
resnet_net = torchvision.models.resnet152(pretrained=True)
modules = list(resnet_net.children())[:-1]
backbone = nn.Sequential(*modules)
backbone.out_channels = 2048
elif backbone_name == 'resnet_50_modified_stride_1':
resnet_net = resnet50(pretrained=True)
modules = list(resnet_net.children())[:-1]
backbone = nn.Sequential(*modules)
backbone.out_channels = 2048
elif backbone_name == 'resnext101_32x8d':
resnet_net = torchvision.models.resnext101_32x8d(pretrained=True)
modules = list(resnet_net.children())[:-1]
backbone = nn.Sequential(*modules)
backbone.out_channels = 2048

如果我们想使用卷积特征图,我们使用以下代码:
 # backbone
if backbone_name == 'resnet_18':
resnet_net = torchvision.models.resnet18(pretrained=True)
modules = list(resnet_net.children())[:-2]
backbone = nn.Sequential(*modules)

elif backbone_name == 'resnet_34':
resnet_net = torchvision.models.resnet34(pretrained=True)
modules = list(resnet_net.children())[:-2]
backbone = nn.Sequential(*modules)

elif backbone_name == 'resnet_50':
resnet_net = torchvision.models.resnet50(pretrained=True)
modules = list(resnet_net.children())[:-2]
backbone = nn.Sequential(*modules)

elif backbone_name == 'resnet_101':
resnet_net = torchvision.models.resnet101(pretrained=True)
modules = list(resnet_net.children())[:-2]
backbone = nn.Sequential(*modules)

elif backbone_name == 'resnet_152':
resnet_net = torchvision.models.resnet152(pretrained=True)
modules = list(resnet_net.children())[:-2]
backbone = nn.Sequential(*modules)

elif backbone_name == 'resnet_50_modified_stride_1':
resnet_net = resnet50(pretrained=True)
modules = list(resnet_net.children())[:-2]
backbone = nn.Sequential(*modules)

elif backbone_name == 'resnext101_32x8d':
resnet_net = torchvision.models.resnext101_32x8d(pretrained=True)
modules = list(resnet_net.children())[:-2]
backbone = nn.Sequential(*modules)

关于neural-network - Resnet-18 作为 Faster R-CNN 的主干,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58362892/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com