- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有大小不均匀的图像,所以当卷积将它缩小 2 倍时,然后我做 Conv2DTranspose
,我没有得到一致的尺寸,这是一个问题。
所以我想我会用额外的行和列填充中间张量,其值与我在边缘看到的值相同,以尽量减少干扰。我如何在 Keras 中做到这一点,甚至可能吗?我的选择是什么?
最佳答案
使用 Tensorflow 作为背景,你可以使用 tf.concat()
将行/列的副本添加到张量中。
假设您要复制最后一行/列:
import tensorflow as tf
from keras.layers import Lambda, Input
from keras.models import Model
import numpy as np
def duplicate_last_row(tensor):
return tf.concat((tensor, tf.expand_dims(tensor[:, -1, ...], 1)), axis=1)
def duplicate_last_col(tensor):
return tf.concat((tensor, tf.expand_dims(tensor[:, :, -1, ...], 2)), axis=2)
# --------------
# Demonstrating with TF:
x = tf.convert_to_tensor([[[1, 2, 3], [4, 5, 6]],
[[10, 20, 30], [40, 50, 60]]])
x = duplicate_last_row(duplicate_last_col(x))
with tf.Session() as sess:
print(sess.run(x))
# [[[ 1 2 3 3]
# [ 4 5 6 6]
# [ 4 5 6 6]]
#
# [[10 20 30 30]
# [40 50 60 60]
# [40 50 60 60]]]
# --------------
# Using as a Keras Layer:
inputs = Input(shape=(5, 5, 3))
padded = Lambda(lambda t: duplicate_last_row(duplicate_last_col(t)))(inputs)
model = Model(inputs=inputs, outputs=padded)
model.compile(optimizer="adam", loss='mse', metrics=['mse'])
batch = np.random.rand(2, 5, 5, 3)
x = model.predict(batch, batch_size=2)
print(x.shape)
# (2, 6, 6, 3)
关于tensorflow - Keras - 在边界上填充带有值的张量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51810015/
我想矢量化以下代码: def style_noise(self, y, style): n = torch.randn(y.shape) for i in range(n.shape[
对于给定的二维张量,我想检索值为 1 的所有索引。我希望能够简单地使用 torch.nonzero(a == 1).squeeze(),它将返回张量([1, 3, 2])。但是,torch.nonze
如果 x 是 dtype torch.float 的 torch.Tensor 那么操作 x.item() 和 float(x)完全一样? 最佳答案 操作x.item() 和float(x) 是不一样
我正在尝试提取 n 点 3D 坐标和 b 批处理中的特定行。本质上,我的张量 T1 的形状为 b*n*3。我有另一个形状为 b * n 的 bool 张量 T2,指示需要获取 n 的哪些行。本质上我的
以下代码掩码很好 mask = targets >= 0 targets = targets[mask] 但是,当我尝试使用两个条件进行屏蔽时,它会给出 RuntimeError: Boolean v
我正在定义一个简单的 conv2d 函数来计算输入和内核(均为 2D 张量)之间的互相关,如下所示: import torch def conv2D(X, K): h = K.shape[0]
作为训练 CNN 的一部分,我正在使用数组 inputs包含 对象。我想轮换一个人一些随机度数的对象 x ,如下所示: def rotate(inputs, x): # Rotate inpu
我有一个索引列表和一个具有形状的张量: shape = [batch_size, d_0, d_1, ..., d_k] idx = [i_0, i_1, ..., i_k] 有没有办法用索引 i_0
假设我有张量 t = torch.tensor([1,2,3,4,5]) 我想使用相同大小的索引张量来拆分它,该张量告诉我每个元素应该进行哪个拆分。 indices = torch.tensor([0
我尝试从生成器构建一个张量,如下所示: >>> torch.tensor(i**2 for i in range(10)) Traceback (most recent call last): F
假设我有一个一维 PyTorch 张量 end_index长度为L。 我想构造一个 2D PyTorch 张量 T有 L 行,其中 T[i,j] = 2什么时候j < end_index[i]和 T[
我在 pytorch 中有一个张量 x 比方说形状 (5,3,2,6) 和另一个形状 (5,3,2,1) 的张量 idx,其中包含第一个张量中每个元素的索引。我想用第二个张量的索引对第一个张量进行切片
我有以下火炬张量: tensor([[-0.2, 0.3], [-0.5, 0.1], [-0.4, 0.2]]) 以及以下 numpy 数组:(如有必要,我可以将其转换为其他内
tf.data.Dataset的构造函数接受一个参数 variant_tensor ,这只是 documented as : A DT_VARIANT tensor that represents t
我有: inp = torch.randn(4, 1040, 161) 我还有另一个名为 indices 的张量值: tensor([[124, 583, 158, 529], [1
我有一个张量 inps ,其大小为 [64, 161, 1]我有一些新数据d大小为 [64, 161] .如何添加 d至inps这样新的大小是[64, 161, 2] ? 最佳答案 使用 .unsqu
我有张量 t = torch.tensor([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) 和一个查询张量 q = torch.te
给定一个 3d 张量,说:batch x sentence length x embedding dim a = torch.rand((10, 1000, 96)) 以及每个句子的实际长度数组(或张
我想使用 [int, -1] 符号 reshape 张量(例如,压平图像)。但我事先并不知道第一个维度。一个用例是在大批量上进行训练,然后在较小的批量上进行评估。 为什么会出现以下错误:获取包含“_M
我有两个 torch 张量。一个形状为 [64, 4, 300],一个形状为 [64, 300]。我如何连接这两个张量以获得形状为 [64, 5, 300] 的合成张量。我知道用于此的 tensor.
我是一名优秀的程序员,十分优秀!