- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我需要一个非常精确的算法来将一个圆拟合到一组数据点(实际上我需要确定中心)。数据来自图像的二值化和分割之后。
我尝试了简单的质心和加权质心算法以及预制的 OpenCv::fitEllipse 函数。我已经从 OpenCV 函数中获得了最好的结果,但仍然不够准确。当中心 anchor 定在子像素区域时,结果会显着受损。
即使在处理建模数据时,我获得的准确性也不够,这很糟糕,因为最终该程序将不得不处理由相机捕获的数据。
你有什么建议我应该寻找什么样的算法或者你有任何现成的解决方案吗?我宁愿避免链接任何外部库。
谢谢你的帮助。
编辑:
校准目标可以定位在视场的任何区域。以下是我使用 OpenCV 程序获得的最佳结果:
169,367 748,345
167,557 820,788
165,690 893,158
164,047 965,197
162,715 1036,729
161,575 1108,089
160,477 1179,552
233,297 1015,313
232,076 1086,965
220,359 1229,578
268,494 1160,275
339,544 1162,980
362,017 1235,669
433,390 1238,491
482,754 1168,299
505,233 1241,039
554,856 1170,664
577,302 1243,439
627,331 1172,795
649,507 1245,665
713,572 588,896
711,995 661,853
710,440 735,034
708,722 808,856
707,018 882,674
705,377 956,169
703,609 1029,211
701,716 1101,950
699,760 1174,689
721,895 1247,620
785,829 614,754
784,344 687,750
782,819 761,315
781,292 835,225
779,389 908,975
777,619 982,335
775,688 1055,275
773,672 1128,091
771,603 1200,724
51,1 79,8
51,1 179,8
51,1 279,8
51,1 379,8
51,1 479,8
51,1 579,8
51,1 679,8
51,1 779,8
51,1 879,8
51,1 979,8
51,1 1079,8
51,1 1179,8
51,1 1279,8
51,1 1379,8
51,1 1479,8
151,1 79,8
151,1 179,8
151,1 279,8
151,1 379,8
151,1 479,8
151,1 579,8
151,1 679,8
151,1 779,8
151,1 879,8
151,1 979,8
151,1 1079,8
151,1 1179,8
151,1 1279,8
151,1 1379,8
151,1 1479,8
251,1 79,8
251,1 179,8
251,1 279,8
251,1 379,8
251,1 479,8
251,1 579,8
251,1 679,8
251,1 779,8
251,1 879,8
251,1 979,8
251,1 1079,8
251,1 1179,8
251,1 1279,8
251,1 1379,8
251,1 1479,8
351,1 79,8
351,1 179,8
351,1 279,8
351,1 379,8
351,1 479,8
351,1 579,8
351,1 679,8
351,1 779,8
351,1 879,8
351,1 979,8
351,1 1079,8
351,1 1179,8
351,1 1279,8
351,1 1379,8
351,1 1479,8
451,1 79,8
451,1 179,8
451,1 279,8
451,1 379,8
451,1 479,8
451,1 579,8
451,1 679,8
451,1 779,8
451,1 879,8
451,1 979,8
451,1 1079,8
451,1 1179,8
451,1 1279,8
451,1 1379,8
451,1 1479,8
551,1 79,8
551,1 179,8
551,1 279,8
551,1 379,8
551,1 479,8
551,1 579,8
551,1 679,8
551,1 779,8
551,1 879,8
551,1 979,8
551,1 1079,8
551,1 1179,8
551,1 1279,8
551,1 1379,8
551,1 1479,8
651,1 79,8
651,1 179,8
651,1 279,8
651,1 379,8
651,1 479,8
651,1 579,8
651,1 679,8
651,1 779,8
651,1 879,8
651,1 979,8
651,1 1079,8
651,1 1179,8
651,1 1279,8
651,1 1379,8
651,1 1479,8
751,1 79,8
751,1 179,8
751,1 279,8
751,1 379,8
751,1 479,8
751,1 579,8
751,1 679,8
751,1 779,8
751,1 879,8
751,1 979,8
751,1 1079,8
751,1 1179,8
751,1 1279,8
751,1 1379,8
751,1 1479,8
851,1 79,8
851,1 179,8
851,1 279,8
851,1 379,8
851,1 479,8
851,1 579,8
851,1 679,8
851,1 779,8
851,1 879,8
851,1 979,8
851,1 1079,8
851,1 1179,8
851,1 1279,8
851,1 1379,8
851,1 1479,8
951,1 79,8
951,1 179,8
951,1 279,8
951,1 379,8
951,1 479,8
951,1 579,8
951,1 679,8
951,1 779,8
951,1 879,8
951,1 979,8
951,1 1079,8
951,1 1179,8
951,1 1279,8
951,1 1379,8
951,1 1479,8
1051,1 79,8
1051,1 179,8
1051,1 279,8
1051,1 379,8
1051,1 479,8
1051,1 579,8
1051,1 679,8
1051,1 779,8
1051,1 879,8
1051,1 979,8
1051,1 1079,8
1051,1 1179,8
1051,1 1279,8
1051,1 1379,8
1051,1 1479,8
1151,1 79,8
1151,1 179,8
1151,1 279,8
1151,1 379,8
1151,1 479,8
1151,1 579,8
1151,1 679,8
1151,1 779,8
1151,1 879,8
1151,1 979,8
1151,1 1079,8
1151,1 1179,8
1151,1 1279,8
1151,1 1379,8
1151,1 1479,8
最佳答案
一种使用图像变换和聚类的算法
我使用图像变换和一些统计数据编写了一个小算法来检测你的圆圈。让我们看看它是否符合您的错误预期。
任何好的图像和统计库都可以,我使用 Mathematica 实现了它。
运行如下:
1. 导入图像并运行 Bottom Hat Transform
我们开始尝试隔离圆圈。 Bottom Hat Transform使用 Box Matrix 内核会有所帮助。几乎所有图像库都带有已经实现的算法。
a = Import@"http://i.stack.imgur.com/hiSjj.png";
b = BottomHatTransform[Binarize@a, BoxMatrix[30]]
c = Binarize@HitMissTransform[b, DiskMatrix[20]]
ttflat = Flatten[Table[{i, j, ImageData[c][[i, j]]}, {i, 1232}, {j, 1624}], 1];
ttfilter = Select[ttflat, #[[3]] == 1 &];
Dimensions@ttfilter
{3684, 3}
ttc = FindClusters[ttfilter, 45, Method -> {"Agglomerate", "Linkage" -> "Complete"}];
means = N[Mean /@ ttc, 5]
{{161.67, 1180.1}, {162.75, 1108.9},
{164.11, 1037.6}, {165.47, 966.19} .....
{{51.135, 79.692}, {51.135, 179.69}, {51.135, 279.69},{51.135, 379.69}, {51.135, 479.69},
{51.135, 579.69}, {51.135, 679.69}, {51.135, 779.69},{51.135, 879.69}, {51.135, 979.69},
{51.135, 1079.7}, {51.135, 1179.7}, {51.135, 1279.7},{51.135, 1379.7}, {51.135, 1479.7},
{151.13, 79.692}, {151.13, 179.69}, {151.13, 279.69},{151.13, 379.69}, {151.13, 479.69},
{151.13, 579.69}, {151.13, 679.69}, {151.13, 779.69},{151.13, 879.69}, {151.13, 979.69},
{151.13, 1079.7}, {151.13, 1179.7}, {151.13, 1279.7},{151.13, 1379.7}, {151.13, 1479.7},
{251.13, 79.692}, {251.13, 179.69}, {251.13, 279.69},{251.13, 379.69}, {251.13, 479.69},
{251.13, 579.69}, {251.13, 679.69}, {251.13, 779.69},{251.13, 879.69}, {251.13, 979.69},
{251.13, 1079.7}, {251.13, 1179.7}, {251.13, 1279.7},{251.13, 1379.7}, {251.13, 1479.7}}
关于image-processing - 最佳圆拟合算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/4387488/
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 5年前关闭。 Improve t
我是一名设计老师,试图帮助学生应对编程挑战,所以我编码是为了好玩,但我不是专家。 她需要找到 mode (最常见的值)在使用耦合到 Arduino 的传感器的数据构建的数据集中,然后根据结果激活一些功
我正在开发一个应用程序,该应用程序提供 CPU 使用率最高的 5 个应用程序名称。目前,我通过以下代码获得了排名前 5 的应用程序: var _ = require('lodash');
互联网上很少有例子涉及这个问题的所有三个问题——即 set-process-sentinel ; set-process-filter ;和 start-process . 我尝试了几种不同的方法来微
如 this post 中所述,在 C# 中有两种调用另一个进程的方法。 Process.Start("hello"); 和 Process p = new Process(); p.StartInf
我试图让我的桨从白色变为渐变(线性),并使球具有径向渐变。感谢您的帮助!您可以在 void drawPaddle 中找到桨的代码。 这是我的目标: 这是我的代码: //球 int ballX = 50
考虑:流程(a)根据我的文字: A process is first entered at the time of simulation, at which time it is executed u
我真的希望 Processing 有用于处理数组的 push 和 pop 方法,但由于它没有,我不得不试图找出删除数组中特定位置的对象的最佳方法。我相信这对很多人来说都是基本的,但我可以使用一些帮助,
关闭。这个问题是off-topic .它目前不接受答案。 想改进这个问题吗? Update the question所以它是on-topic用于堆栈溢出。 关闭 10 年前。 Improve thi
以编程方式,我如何确定 Windows 10 中的 3 个类别 应用 后台进程 Windows 服务 就像任务管理器一样? 即我需要一些 C# 代码,我可以确定应用程序列表与后台进程列表。检查 Win
当我导入 node:process它工作正常。但是,当我尝试要求相同时,它会出错。 这工作正常: import process from 'node:process'; 但是当我尝试要求相同时,它会引
我正在上一门使用处理的类(class)。 我在理解 map() 函数时遇到问题。 根据它的文档( http://www.processing.org/reference/map_.html ): Re
我试图执行: composer.phar update 并收到: Fatal error: Allowed memory size of 94371840 bytes exhausted (tried
给定一堆二维图像,如何使用 Processing/Processing.js 产生体积渲染效果? 目前我的想法是使用 java(类似于 imageJ)进行体积渲染 -> 获取体积渲染图像的面作为单独的
这是代码示例 var startInfo = new ProcessStartInfo { Arguments = commandStr, FileName = @"C:\Window
当我在 Processing(草图 > 导入库 > 添加库)中添加库时,它安装在哪里? 最佳答案 它们安装在您的 中速写本位置 . 您可以通过转到"file">“首选项”来查看和更改您的速写本位置。草
无聊的好奇... 我正在查看当前进程的一些属性: using(Process p = Process.GetCurrentProcess()) { // Inspect properties
我正在尝试在同一页面上运行多个草图。 初始化脚本指定: /* * This code searches for all the * in your page and loads each scrip
Process.Kill 后是否需要使用 Process.WaitForExit? 如果调用进程在调用 Process.Kill 后立即退出怎么办? 这会导致 Process.Kill 失败吗? 编辑
我尝试使用处理从麦克风获取频率。我混合了文档中的两个示例,但“最高”并不是真正的赫兹(a 是 440 赫兹)。 你知道如何拥有比这更好的东西吗? import ddf.minim.*; import
我是一名优秀的程序员,十分优秀!