gpt4 book ai didi

python - 如何摆脱混淆矩阵中的白线?

转载 作者:行者123 更新时间:2023-12-03 23:14:33 26 4
gpt4 key购买 nike

有谁知道为什么这些白线将我的混淆矩阵分成四等分?我已经更改了许多参数,但无法弄清楚。使它们消失的唯一原因是我根本不标记块,即“0”、“1”……但这显然不是我想要的。任何帮助,将不胜感激。

代码:

def plot_confusion_matrix(cm,
target_names = ['1', '2', '3', '4'],
title = 'Confusion matrix',
cmap = None,
normalize = False):
"""
given a sklearn confusion matrix (cm), make a nice plot

Arguments
---------
cm: confusion matrix from sklearn.metrics.confusion_matrix

target_names: given classification classes such as [0, 1, 2]
the class names, for example: ['high', 'medium', 'low']

title: the text to display at the top of the matrix

cmap: the gradient of the values displayed from matplotlib.pyplot.cm
see http://matplotlib.org/examples/color/colormaps_reference.html
plt.get_cmap('jet') or plt.cm.Blues

normalize: If False, plot the raw numbers
If True, plot the proportions

Usage
-----
plot_confusion_matrix(cm = cm, # confusion matrix created by
# sklearn.metrics.confusion_matrix
normalize = True, # show proportions
target_names = y_labels_vals, # list of names of the classes
title = best_estimator_name) # title of graph

Citiation
---------
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

"""
import matplotlib.pyplot as plt
import numpy as np
import itertools

accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy

if cmap is None:
cmap = plt.get_cmap('Blues')

plt.figure(figsize = (8, 6))
plt.imshow(cm, interpolation = 'nearest', cmap = cmap)
plt.title(title)
plt.colorbar()

if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation = 0)
plt.yticks(tick_marks, target_names)

if normalize:
cm = cm.astype('float') / cm.sum(axis = 1)[:, np.newaxis]


thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment = "center",
color = "white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment = "center",
color = "white" if cm[i, j] > thresh else "black")


plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
plt.show()


plot_confusion_matrix(cm = (confusion),
normalize = True,
target_names = ['1', '2', '3', '4'],
title = "Confusion Matrix")

输出是:

enter image description here

最佳答案

plt.figure(figsize=(10,5))

plt.grid(False)

plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=False, title='Normalized confusion matrix')

关于python - 如何摆脱混淆矩阵中的白线?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53574918/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com