gpt4 book ai didi

python - Tensorflow 2 中用于自定义训练循环的 Tensorboard

转载 作者:行者123 更新时间:2023-12-03 23:08:35 25 4
gpt4 key购买 nike

我想在 tensorflow 2 中创建一个自定义训练循环并使用 tensorboard 进行可视化。这是我基于 tensorflow 文档创建的示例:

import tensorflow as tf
import datetime

os.environ["CUDA_VISIBLE_DEVICES"] = "0" # which gpu to use

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))

train_dataset = train_dataset.shuffle(60000).batch(64)
test_dataset = test_dataset.batch(64)


def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28), name='Flatten_1'),
tf.keras.layers.Dense(512, activation='relu', name='Dense_1'),
tf.keras.layers.Dropout(0.2, name='Dropout_1'),
tf.keras.layers.Dense(10, activation='softmax', name='Dense_2')
], name='Network')


# Loss and optimizer
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()

# Define our metrics
train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32)
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy('train_accuracy')
test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy('test_accuracy')

@tf.function
def train_step(model, optimizer, x_train, y_train):
with tf.GradientTape() as tape:
predictions = model(x_train, training=True)
loss = loss_object(y_train, predictions)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))

train_loss(loss)
train_accuracy(y_train, predictions)

@tf.function
def test_step(model, x_test, y_test):
predictions = model(x_test)
loss = loss_object(y_test, predictions)

test_loss(loss)
test_accuracy(y_test, predictions)


current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = '/NAS/Dataset/logs/gradient_tape/' + current_time + '/train'
test_log_dir = '/NAS/Dataset/logs/gradient_tape/' + current_time + '/test'
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
test_summary_writer = tf.summary.create_file_writer(test_log_dir)

model = create_model() # reset our model

EPOCHS = 5


for epoch in range(EPOCHS):
for (x_train, y_train) in train_dataset:
train_step(model, optimizer, x_train, y_train)
with train_summary_writer.as_default():
tf.summary.scalar('loss', train_loss.result(), step=epoch)
tf.summary.scalar('accuracy', train_accuracy.result(), step=epoch)

for (x_test, y_test) in test_dataset:
test_step(model, x_test, y_test)
with test_summary_writer.as_default():
tf.summary.scalar('loss', test_loss.result(), step=epoch)
tf.summary.scalar('accuracy', test_accuracy.result(), step=epoch)

template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
print(template.format(epoch + 1,
train_loss.result(),
train_accuracy.result() * 100,
test_loss.result(),
test_accuracy.result() * 100))

# Reset metrics every epoch
train_loss.reset_states()
test_loss.reset_states()
train_accuracy.reset_states()
test_accuracy.reset_states()

我在终端上使用以下命令访问张量板:
tensorboard --logdir=.....

上面的代码生成损失和指标的摘要。我的问题是:
  • 我怎样才能产生这个过程的图表?

  • 我尝试使用 tensorflow 推荐的命令: tf.summary.trace_on() tf.summary.trace_export() ,但我还没有设法绘制图表。也许我使用它们是错误的。我真的很感激关于如何做到这一点的任何建议。

    最佳答案

    如回答 here ,我确定有更好的方法,但一个简单的解决方法是使用现有的 tensorboard 回调逻辑:

    tb_callback = tf.keras.callbacks.TensorBoard(LOG_DIR)
    tb_callback.set_model(model) # Writes the graph to tensorboard summaries using
    an internal file writer

    关于python - Tensorflow 2 中用于自定义训练循环的 Tensorboard,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60639731/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com