- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
问题:我想用 np.einsum
加速包含大量乘积和求和的 python 循环。 ,但我也愿意接受任何其他解决方案。
我的函数采用形状为 (n,n,3) 的向量配置 S(我的情况:n=72)并对 N*N 点的相关函数进行傅立叶变换。相关函数定义为每个向量与其他向量的乘积。这乘以向量位置乘以 kx 和 ky 值的余弦函数。各岗位i,j
最后相加得到 k 空间中的一分 p,m
:
def spin_spin(S,N):
n= len(S)
conf = np.reshape(S,(n**2,3))
chi = np.zeros((N,N))
kx = np.linspace(-5*np.pi/3,5*np.pi/3,N)
ky = np.linspace(-3*np.pi/np.sqrt(3),3*np.pi/np.sqrt(3),N)
x=np.reshape(triangular(n)[0],(n**2))
y=np.reshape(triangular(n)[1],(n**2))
for p in range(N):
for m in range(N):
for i in range(n**2):
for j in range(n**2):
chi[p,m] += 2/(n**2)*np.dot(conf[i],conf[j])*np.cos(kx[p]*(x[i]-x[j])+ ky[m]*(y[i]-y[j]))
return(chi,kx,ky)
numpy
的内置 FFT ,因为我的三角形网格,所以我需要一些其他的选择来减少这里的计算成本。
np.einsum
功能。计算每个向量与每个向量的乘积是通过以下方式完成的:
np.einsum('ij,kj -> ik',np.reshape(S,(72**2,3)),np.reshape(S,(72**2,3)))
np.cos
中的项。 .在这里,我想计算形状列表 (100,1) 与向量位置之间的乘积(例如
np.shape(x)=(72**2,1)
)。特别是我真的不知道如何用
np.einsum
实现x 方向和y 方向的距离。 .
np.ones((72,72,3)
或者您以随机向量为例:
def spherical_to_cartesian(r, theta, phi):
'''Convert spherical coordinates (physics convention) to cartesian coordinates'''
sin_theta = np.sin(theta)
x = r * sin_theta * np.cos(phi)
y = r * sin_theta * np.sin(phi)
z = r * np.cos(theta)
return x, y, z # return a tuple
def random_directions(n, r):
'''Return ``n`` 3-vectors in random directions with radius ``r``'''
out = np.empty(shape=(n,3), dtype=np.float64)
for i in range(n):
# Pick directions randomly in solid angle
phi = random.uniform(0, 2*np.pi)
theta = np.arccos(random.uniform(-1, 1))
# unpack a tuple
x, y, z = spherical_to_cartesian(r, theta, phi)
out[i] = x, y, z
return out
S = np.reshape(random_directions(72**2,1),(72,72,3))
spin_spin
中将其整形回 (72**2,3) 形状。)
def triangular(nsize):
'''Positional arguments of the spin configuration'''
X=np.zeros((nsize,nsize))
Y=np.zeros((nsize,nsize))
for i in range(nsize):
for j in range(nsize):
X[i,j]+=1/2*j+i
Y[i,j]+=np.sqrt(3)/2*j
return(X,Y)
最佳答案
优化 Numba 实现
您代码中的主要问题是调用外部 BLAS 函数 np.dot
反复极小数据。在这段代码中,只计算一次会更有意义,但是如果您必须在循环中进行计算,请编写一个 Numba 实现。 Example
优化功能(蛮力)
import numpy as np
import numba as nb
@nb.njit(fastmath=True,error_model="numpy",parallel=True)
def spin_spin(S,N):
n= len(S)
conf = np.reshape(S,(n**2,3))
chi = np.zeros((N,N))
kx = np.linspace(-5*np.pi/3,5*np.pi/3,N).astype(np.float32)
ky = np.linspace(-3*np.pi/np.sqrt(3),3*np.pi/np.sqrt(3),N).astype(np.float32)
x=np.reshape(triangular(n)[0],(n**2)).astype(np.float32)
y=np.reshape(triangular(n)[1],(n**2)).astype(np.float32)
#precalc some values
fact=nb.float32(2/(n**2))
conf_dot=np.dot(conf,conf.T).astype(np.float32)
for p in nb.prange(N):
for m in range(N):
#accumulating on a scalar is often beneficial
acc=nb.float32(0)
for i in range(n**2):
for j in range(n**2):
acc+= conf_dot[i,j]*np.cos(kx[p]*(x[i]-x[j])+ ky[m]*(y[i]-y[j]))
chi[p,m]=fact*acc
return(chi,kx,ky)
@nb.njit()
def precalc(S):
#There may not be all redundancies removed
n= len(S)
conf = np.reshape(S,(n**2,3))
conf_dot=np.dot(conf,conf.T)
x=np.reshape(triangular(n)[0],(n**2))
y=np.reshape(triangular(n)[1],(n**2))
x_s=set()
y_s=set()
for i in range(n**2):
for j in range(n**2):
x_s.add((x[i]-x[j]))
y_s.add((y[i]-y[j]))
x_arr=np.sort(np.array(list(x_s)))
y_arr=np.sort(np.array(list(y_s)))
conf_dot_sel=np.zeros((x_arr.shape[0],y_arr.shape[0]))
for i in range(n**2):
for j in range(n**2):
ii=np.searchsorted(x_arr,x[i]-x[j])
jj=np.searchsorted(y_arr,y[i]-y[j])
conf_dot_sel[ii,jj]+=conf_dot[i,j]
return x_arr,y_arr,conf_dot_sel
@nb.njit(fastmath=True,error_model="numpy",parallel=True)
def spin_spin_opt_2(S,N):
chi = np.empty((N,N))
n= len(S)
kx = np.linspace(-5*np.pi/3,5*np.pi/3,N)
ky = np.linspace(-3*np.pi/np.sqrt(3),3*np.pi/np.sqrt(3),N)
x_arr,y_arr,conf_dot_sel=precalc(S)
fact=2/(n**2)
for p in nb.prange(N):
for m in range(N):
acc=nb.float32(0)
for i in range(x_arr.shape[0]):
for j in range(y_arr.shape[0]):
acc+= fact*conf_dot_sel[i,j]*np.cos(kx[p]*x_arr[i]+ ky[m]*y_arr[j])
chi[p,m]=acc
return(chi,kx,ky)
@nb.njit()
def precalc(S):
#There may not be all redundancies removed
n= len(S)
conf = np.reshape(S,(n**2,3))
conf_dot=np.dot(conf,conf.T)
x=np.reshape(triangular(n)[0],(n**2))
y=np.reshape(triangular(n)[1],(n**2))
x_s=set()
y_s=set()
for i in range(n**2):
for j in range(n**2):
x_s.add((x[i]-x[j]))
y_s.add((y[i]-y[j]))
x_arr=np.sort(np.array(list(x_s)))
y_arr=np.sort(np.array(list(y_s)))
conf_dot_sel=np.zeros((x_arr.shape[0],y_arr.shape[0]))
for i in range(n**2):
for j in range(n**2):
ii=np.searchsorted(x_arr,x[i]-x[j])
jj=np.searchsorted(y_arr,y[i]-y[j])
conf_dot_sel[ii,jj]+=conf_dot[i,j]
return x_arr,y_arr,conf_dot_sel
@nb.njit(fastmath=True,error_model="numpy",parallel=True)
def spin_spin_opt_2(S,N):
chi = np.empty((N,N))
n= len(S)
kx = np.linspace(-5*np.pi/3,5*np.pi/3,N)
ky = np.linspace(-3*np.pi/np.sqrt(3),3*np.pi/np.sqrt(3),N)
x_arr,y_arr,conf_dot_sel=precalc(S)
fact=2/(n**2)
for p in nb.prange(N):
for m in range(N):
acc=nb.float32(0)
for i in range(x_arr.shape[0]):
for j in range(y_arr.shape[0]):
acc+= fact*conf_dot_sel[i,j]*np.cos(kx[p]*x_arr[i]+ ky[m]*y_arr[j])
chi[p,m]=acc
return(chi,kx,ky)
#brute-force
%timeit res=spin_spin(S,100)
#48 s ± 671 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#new version
%timeit res_2=spin_spin_opt_2(S,100)
#5.33 s ± 59.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit res_2=spin_spin_opt_2(S,1000)
#1min 23s ± 2.43 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
import numba as nb
import numpy as np
@nb.njit(fastmath=True)
def foo(n):
x = np.empty(n*8, dtype=np.float64)
ret = np.empty_like(x)
for i in range(ret.size):
ret[i] += np.cos(x[i])
return ret
foo(1000)
if 'intel_svmlcc' in foo.inspect_llvm(foo.signatures[0]):
print("found")
else:
print("not found")
#found
not found
阅读
this link.它应该可以在 Linux 和 Windows 上运行,但我还没有在 macOS 上测试过。
关于python - python中FFT的循环加速(使用 `np.einsum`),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60934744/
FFT 库(例如 FFTW 或 numpy.fft)通常提供两个函数 fft() 和 ifft()(及其用于实值输入的特殊版本)。这些功能似乎被定义为 ifft(fft(X)) == X 和 fft(
如果我有一个特定大小 M(2 的幂)的 FFT 实现,我如何计算一组大小 P=k*M 的 FFT,其中 k 也是 2 的幂? #define M 256 #define P 1024 comple
下午好! 我正在尝试基于我已有的简单递归 FFT 实现来开发 NTT 算法。 考虑以下代码(coefficients'的长度,让它为m,是2的精确幂): /// /// Calculates the
我正在分析时间序列数据,并希望提取 5 个主要频率分量并将其用作训练机器学习模型的特征。我的数据集是 921 x 10080 。每行是一个时间序列,总共有 921 个。 在探索可能的方法时,我遇到了各
我找不到任何官方文档来证明 scipy.fft 实际上是 numpy.fft.fftpack.fft 的链接。这是显示链接的 iPython session : In [1]: import scip
文档说 np.fft.fft 这样做: Compute the one-dimensional discrete Fourier Transform. 和 np.fft.rfft 这样做: Compu
近一个月来,我一直在与一个非常奇怪的错误作斗争。问你们是我最后的希望。我用 C 编写了一个程序,它集成了 2d Cahn–Hilliard equation在傅里叶(或倒数)空间中使用隐式欧拉 (IE
我一直在制作一个例程,使用 NumPy/Scipy 测量两个光谱之间的相位差。 我已经有了Matlab写的例程,所以我基本上是用NumPy重新实现了函数和相应的单元测试。但是,我发现单元测试失败了,因
我正在研究使用 Renderscript 对大型复杂输入数组执行 FFT。 FFT 是相当标准的,因为它涉及三个循环,但内部循环执行 FFT 中的蝶形运算。因为每个蝴蝶使用数组的不同部分,所以没有明显
我需要通过修改 FFT 结果来均衡音乐样本。 我知道如何获得每个输出虚数的频率,问题是修改这个值以获得“均衡器效果”。 我需要知道如何缩放这个值。 条目大小为 4096 个样本,采样率为 44100
我将在 kiss-fft 之前制定几个计划同时(平行),我可以这样做吗,或者换句话说,kiss-fft 线程安全吗? 谢谢 最佳答案 自述文件: No static data is used. Th
要在频域中插入信号,可以在时域中填充零并执行 FFT。 假设给定向量 X 中的元素数为 N 并且 Y 与 X 相同但在一侧用 N 零填充。然后下面给出相同的结果。 $$\hat{x}(k)=\sum_
我通过相关了解了 DFT 的工作原理,并将其用作理解 FFT 结果的基础。如果我有一个以 44.1kHz 采样的离散信号,那么这意味着如果我要获取 1 秒的数据,我将有 44,100 个样本。为了对其
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
我有以下代码...请注意#生成正弦曲线下的两行。一个使用比另一个更高的 2pi 精度值,但它们仍然应该给出几乎相同的结果。 import numpy as np import matplotlib.p
我正在努力确保 FFTW 做我认为它应该做的事情,但我遇到了问题。我正在使用 OpenCV 的 cv::Mat。我制作了一个测试程序,给定一个 Mat f,计算 ifft(fft(f)) 并将结果与
我是从事电信项目的计算机程序员。 在我们的项目中,我必须将一系列复数更改为它们的傅立叶变换。因此我需要一个高效的 FFT 代码来满足 C89 标准。 我正在使用以下代码,它运行良好: shor
我目前正在尝试了解 numpy 的 fft 函数。为此,我测试了以下假设: 我有两个函数,f(x) = x^2 和 g(x) = f'(x) = 2*x。根据傅立叶变换定律和 wolfram alph
我一直在使用 FFT,目前正在尝试使用 FFT 从文件中获取声音波形(最终对其进行修改),然后将修改后的波形输出回文件。我得到了声波的 FFT,然后对其使用了反 FFT 函数,但输出文件听起来一点也不
我是一名优秀的程序员,十分优秀!