- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
给定 Pandas 数据帧中的事件日志,其中包含一个“id”,该“id”在指定的“时间戳”处经历一系列“ Action ”——我想保留与指定的 Action 序列相对应的行。
例如输入数据
import pandas as pd
# Create a sample data-frame from a dictionary
id = ['A123', 'A123', 'A123', 'A123', 'A123', 'A123', 'A234', 'A234', 'A234', 'A234', 'A341', 'A341', 'A341', 'A341', 'A341', 'A341', 'A341', 'A341', 'A341', 'A341']
action = ['A', 'B', 'C', 'D', 'B', 'A', 'B', 'A', 'C', 'D', 'D', 'B', 'C', 'D', 'A', 'B', 'C', 'D', 'B', 'C']
timestamp = ['1', '2', '3', '4', '5', '6', '1', '2', '3', '4', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10']
the_dict = {'id': id, 'action': action, 'timestamp': timestamp}
# This is the sample data-frame with columns:
# id action timestamp
# Each id when ordered by timestamp then action gives the sequence of actions taken by the id
dataFrame = pd.DataFrame(the_dict)
######################################
# Input data
######################################
# id action timestamp
#0 A123 A 1
#1 A123 B 2
#2 A123 C 3
#3 A123 D 4
#4 A123 B 5
#5 A123 A 6
#6 A234 B 1
#7 A234 A 2
#8 A234 C 3
#9 A234 D 4
#10 A341 D 1
#11 A341 B 2
#12 A341 C 3
#13 A341 D 4
#14 A341 A 5
#15 A341 B 6
#16 A341 C 7
#17 A341 D 8
#18 A341 B 9
#19 A341 C 10
# The sequence of interest
the_sequence = ['B', 'C', 'D']
# Desired output: Group by id, order by timestamp, return all rows which match the given sequence of actions
######################################
# The output data-frame:
######################################
# id action timestamp
#1 A123 B 2
#2 A123 C 3
#3 A123 D 4
#11 A341 B 2
#12 A341 C 3
#13 A341 D 4
#15 A341 B 6
#16 A341 C 7
#17 A341 D 8
最佳答案
您可以使用 .shift
A
的逻辑, B
, 和 C
.基本上,您正在检查 A
具有 B
的行和 C
在接下来的行中。这将返回 A
的。然后,为 B
遵循类似的协议(protocol)和 C
.
df = (df[df.groupby('id')['action'].
apply(lambda x:
(x == 'B') & (x.shift(-1) == 'C') & (x.shift(-2) == 'D') |
(x == 'C') & (x.shift(1) == 'B') & (x.shift(-1) == 'D') |
(x == 'D') & (x.shift(2) == 'B') & (x.shift(1) == 'C'))])
df
输出:
id action timestamp
1 A123 B 2
2 A123 C 3
3 A123 D 4
11 A341 B 2
12 A341 C 3
13 A341 D 4
15 A341 B 6
16 A341 C 7
17 A341 D 8
关于python - Pandas 只保留指定的子序列(groupby order 保留子序列),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63024764/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!