- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在 R
中实现以下卷积,但没有得到预期的结果:
$$
C_{\sigma}[i]=\sum\limits_{k=-P}^P SDL_{\sigma}[i-k,i]\centerdot S[i]
$$
其中 $S[i]$ 是光谱强度向量(洛伦兹信号/NMR 光谱),$i\in [1,N]$ 其中 $N$ 是数据点的数量(在实际示例中,可能是 32K值)。这是 Jacob, Deborde and Moing, Analytical Bioanalytical Chemistry (2013) 405:5049-5061 (DOI 10.1007/s00216-013-6852-y) 中的方程 1。
$SDL_{\sigma}$ 是计算洛伦兹曲线二阶导数的函数,我实现如下(基于论文中的方程 2):
SDL <- function(x, x0, sigma = 0.0005){
if (!sigma > 0) stop("sigma must be greater than zero.")
num <- 16 * sigma * ((12 * (x-x0)^2) - sigma^2)
denom <- pi * ((4 * (x - x0)^2) + sigma^2)^3
sdl <- num/denom
return(sdl)
}
sigma
是半峰宽,
x0
是洛伦兹信号的中心。
SDL
工作正常(因为返回值的形状类似于经验 Savitzky-Golay 二阶导数)。我的问题是实现 $C_{\sigma}$,我写成:
CP <- function(S = NULL, X = NULL, method = "SDL", W = 2000, sigma = 0.0005) {
# S is the spectrum, X is the frequencies, W is the window size (2*P in the eqn above)
# Compute the requested 2nd derivative
if (method == "SDL") {
P <- floor(W/2)
sdl <- rep(NA_real_, length(X)) # initialize a vector to store the final answer
for(i in 1:length(X)) {
# Shrink window if necessary at each extreme
if ((i + P) > length(X)) P <- (length(X) - i + 1)
if (i < P) P <- i
# Assemble the indices corresponding to the window
idx <- seq(i - P + 1, i + P - 1, 1)
# Now compute the sdl
sdl[i] <- sum(SDL(X[idx], X[i], sigma = sigma))
P <- floor(W/2) # need to reset at the end of each iteration
}
}
if (method == "SG") {
sdl <- sgolayfilt(S, m = 2)
}
# Now convolve! There is a built-in function for this!
cp <- convolve(S, sdl, type = "open")
# The convolution has length 2*(length(S)) - 1 due to zero padding
# so we need rescale back to the scale of S
# Not sure if this is the right approach, but it doesn't affect the shape
cp <- c(cp, 0.0)
cp <- colMeans(matrix(cp, ncol = length(cp)/2)) # stackoverflow.com/q/32746842/633251
return(cp)
}
require("SpecHelpers")
require("signal")
# Create a Lorentzian curve
loren <- data.frame(x0 = 0, area = 1, gamma = 0.5)
lorentz1 <- makeSpec(loren, plot = FALSE, type = "lorentz", dd = 100, x.range = c(-10, 10))
#
# Compute convolution
x <- lorentz1[1,] # Frequency values
y <- lorentz1[2,] # Intensity values
sig <- 100 * 0.0005 # per the reference
cpSDL <- CP(S = y, X = x, sigma = sig)
sdl <- sgolayfilt(y, m = 2)
cpSG <- CP(S = y, method = "SG")
#
# Plot the original data, compare to convolution product
ylabel <- "data (black), Conv. Prod. SDL (blue), Conv. Prod. SG (red)"
plot(x, y, type = "l", ylab = ylabel, ylim = c(-0.75, 0.75))
lines(x, cpSG*100, col = "red")
lines(x, cpSDL/2e5, col = "blue")
CP
的卷积乘积使用
SDL
(蓝色)与
CP
的卷积乘积不同使用
SG
方法(红色,这是正确的,除了比例)。我期待使用
SDL
的结果方法应该具有相似的形状,但规模不同。
最佳答案
您正在执行的手动卷积存在一些问题。如果您查看维基百科页面上为“Savitzky–Golay filter”定义的卷积函数here ,您会看到 y[j+i]
求和中与 S[i]
冲突的项您引用的等式中的术语。我相信您引用的公式可能不正确/打错了。
我按如下方式修改了您的函数,现在似乎可以产生与 sgolayfilt()
相同的形状。版本,虽然我不确定我的实现是完全正确的。注意选择sigma
很重要并且确实会影响最终的形状。如果最初没有得到相同的形状,请尝试显着调整 sigma
范围。
CP <- function(S = NULL, X = NULL, method = "SDL", W = 2000, sigma = 0.0005) {
# S is the spectrum, X is the frequencies, W is the window size (2*P in the eqn above)
# Compute the requested 2nd derivative
if (method == "SDL") {
sdl <- rep(NA_real_, length(X)) # initialize a vector to store the final answer
for(i in 1:length(X)) {
bound1 <- 2*i - 1
bound2 <- 2*length(X) - 2*i + 1
P <- min(bound1, bound2)
# Assemble the indices corresponding to the window
idx <- seq(i-(P-1)/2, i+(P-1)/2, 1)
# Now compute the sdl
sdl[i] <- sum(SDL(X[idx], X[i], sigma = sigma) * S[idx])
}
}
if (method == "SG") {
sdl <- sgolayfilt(S, m = 2)
}
# Now convolve! There is a built-in function for this!
cp <- convolve(S, sdl, type = "open")
# The convolution has length 2*(length(S)) - 1 due to zero padding
# so we need rescale back to the scale of S
# Not sure if this is the right approach, but it doesn't affect the shape
cp <- c(cp, 0.0)
cp <- colMeans(matrix(cp, ncol = length(cp)/2)) # stackoverflow.com/q/32746842/633251
return(cp)
}
关于r - 意外的卷积结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34032500/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!