gpt4 book ai didi

r - 意外的卷积结果

转载 作者:行者123 更新时间:2023-12-03 22:37:21 28 4
gpt4 key购买 nike

我正在尝试在 R 中实现以下卷积,但没有得到预期的结果:

$$
C_{\sigma}[i]=\sum\limits_{k=-P}^P SDL_{\sigma}[i-k,i]\centerdot S[i]
$$
enter image description here

其中 $S[i]$ 是光谱强度向量(洛伦兹信号/NMR 光谱),$i\in [1,N]$ 其中 $N$ 是数据点的数量(在实际示例中,可能是 32K值)。这是 Jacob, Deborde and Moing, Analytical Bioanalytical Chemistry (2013) 405:5049-5061 (DOI 10.1007/s00216-013-6852-y) 中的方程 1。

$SDL_{\sigma}$ 是计算洛伦兹曲线二阶导数的函数,我实现如下(基于论文中的方程 2):

SDL <- function(x, x0, sigma = 0.0005){
if (!sigma > 0) stop("sigma must be greater than zero.")
num <- 16 * sigma * ((12 * (x-x0)^2) - sigma^2)
denom <- pi * ((4 * (x - x0)^2) + sigma^2)^3
sdl <- num/denom
return(sdl)
}
sigma是半峰宽, x0是洛伦兹信号的中心。

我相信 SDL工作正常(因为返回值的形状类似于经验 Savitzky-Golay 二阶导数)。我的问题是实现 $C_{\sigma}$,我写成:
CP <- function(S = NULL, X = NULL, method = "SDL", W = 2000, sigma = 0.0005) {
# S is the spectrum, X is the frequencies, W is the window size (2*P in the eqn above)
# Compute the requested 2nd derivative
if (method == "SDL") {

P <- floor(W/2)
sdl <- rep(NA_real_, length(X)) # initialize a vector to store the final answer

for(i in 1:length(X)) {
# Shrink window if necessary at each extreme
if ((i + P) > length(X)) P <- (length(X) - i + 1)
if (i < P) P <- i
# Assemble the indices corresponding to the window
idx <- seq(i - P + 1, i + P - 1, 1)
# Now compute the sdl
sdl[i] <- sum(SDL(X[idx], X[i], sigma = sigma))
P <- floor(W/2) # need to reset at the end of each iteration
}
}

if (method == "SG") {
sdl <- sgolayfilt(S, m = 2)
}

# Now convolve! There is a built-in function for this!
cp <- convolve(S, sdl, type = "open")
# The convolution has length 2*(length(S)) - 1 due to zero padding
# so we need rescale back to the scale of S
# Not sure if this is the right approach, but it doesn't affect the shape
cp <- c(cp, 0.0)
cp <- colMeans(matrix(cp, ncol = length(cp)/2)) # stackoverflow.com/q/32746842/633251
return(cp)
}

根据引用,二阶导数的计算仅限于大约 2000 个数据点的窗口以节省时间。我认为这部分工作正常。它应该只产生微不足道的扭曲。

下面演示一下整个过程和问题:
require("SpecHelpers")
require("signal")
# Create a Lorentzian curve
loren <- data.frame(x0 = 0, area = 1, gamma = 0.5)
lorentz1 <- makeSpec(loren, plot = FALSE, type = "lorentz", dd = 100, x.range = c(-10, 10))
#
# Compute convolution
x <- lorentz1[1,] # Frequency values
y <- lorentz1[2,] # Intensity values
sig <- 100 * 0.0005 # per the reference
cpSDL <- CP(S = y, X = x, sigma = sig)
sdl <- sgolayfilt(y, m = 2)
cpSG <- CP(S = y, method = "SG")
#
# Plot the original data, compare to convolution product
ylabel <- "data (black), Conv. Prod. SDL (blue), Conv. Prod. SG (red)"
plot(x, y, type = "l", ylab = ylabel, ylim = c(-0.75, 0.75))
lines(x, cpSG*100, col = "red")
lines(x, cpSDL/2e5, col = "blue")

graphic

如您所见,来自 CP 的卷积乘积使用 SDL (蓝色)与 CP 的卷积乘积不同使用 SG方法(红色,这是正确的,除了比例)。我期待使用 SDL 的结果方法应该具有相似的形状,但规模不同。

如果到目前为止你一直坚持我,a) 谢谢,b) 你能看出哪里出了问题吗?毫无疑问,我有一个根本的误解。

最佳答案

您正在执行的手动卷积存在一些问题。如果您查看维基百科页面上为“Savitzky–Golay filter”定义的卷积函数here ,您会看到 y[j+i]求和中与 S[i] 冲突的项您引用的等式中的术语。我相信您引用的公式可能不正确/打错了。

我按如下方式修改了您的函数,现在似乎可以产生与 sgolayfilt() 相同的形状。版本,虽然我不确定我的实现是完全正确的。注意选择sigma很重要并且确实会影响最终的形状。如果最初没有得到相同的形状,请尝试显着调整 sigma范围。

CP <- function(S = NULL, X = NULL, method = "SDL", W = 2000, sigma = 0.0005) {
# S is the spectrum, X is the frequencies, W is the window size (2*P in the eqn above)
# Compute the requested 2nd derivative
if (method == "SDL") {
sdl <- rep(NA_real_, length(X)) # initialize a vector to store the final answer

for(i in 1:length(X)) {
bound1 <- 2*i - 1
bound2 <- 2*length(X) - 2*i + 1
P <- min(bound1, bound2)
# Assemble the indices corresponding to the window
idx <- seq(i-(P-1)/2, i+(P-1)/2, 1)
# Now compute the sdl
sdl[i] <- sum(SDL(X[idx], X[i], sigma = sigma) * S[idx])
}
}

if (method == "SG") {
sdl <- sgolayfilt(S, m = 2)
}

# Now convolve! There is a built-in function for this!
cp <- convolve(S, sdl, type = "open")
# The convolution has length 2*(length(S)) - 1 due to zero padding
# so we need rescale back to the scale of S
# Not sure if this is the right approach, but it doesn't affect the shape
cp <- c(cp, 0.0)
cp <- colMeans(matrix(cp, ncol = length(cp)/2)) # stackoverflow.com/q/32746842/633251
return(cp)
}

关于r - 意外的卷积结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34032500/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com