gpt4 book ai didi

apache-spark - 为什么Complete输出模式需要聚合?

转载 作者:行者123 更新时间:2023-12-03 22:34:16 25 4
gpt4 key购买 nike

我在 Apache Spark 2.2 中使用最新的结构化流,但出现以下异常:

org.apache.spark.sql.AnalysisException: Complete output mode not supported when there are no streaming aggregations on streaming DataFrames/Datasets;;



为什么 Complete 输出模式需要流式聚合?如果 Spark 允许在流式查询中没有聚合的完整输出模式会发生什么?

scala> spark.version
res0: String = 2.2.0

import org.apache.spark.sql.execution.streaming.MemoryStream
import org.apache.spark.sql.SQLContext
implicit val sqlContext: SQLContext = spark.sqlContext
val source = MemoryStream[(Int, Int)]
val ids = source.toDS.toDF("time", "id").
withColumn("time", $"time" cast "timestamp"). // <-- convert time column from Int to Timestamp
dropDuplicates("id").
withColumn("time", $"time" cast "long") // <-- convert time column back from Timestamp to Int

import org.apache.spark.sql.streaming.{OutputMode, Trigger}
import scala.concurrent.duration._
scala> val q = ids.
| writeStream.
| format("memory").
| queryName("dups").
| outputMode(OutputMode.Complete). // <-- memory sink supports checkpointing for Complete output mode only
| trigger(Trigger.ProcessingTime(30.seconds)).
| option("checkpointLocation", "checkpoint-dir"). // <-- use checkpointing to save state between restarts
| start
org.apache.spark.sql.AnalysisException: Complete output mode not supported when there are no streaming aggregations on streaming DataFrames/Datasets;;
Project [cast(time#10 as bigint) AS time#15L, id#6]
+- Deduplicate [id#6], true
+- Project [cast(time#5 as timestamp) AS time#10, id#6]
+- Project [_1#2 AS time#5, _2#3 AS id#6]
+- StreamingExecutionRelation MemoryStream[_1#2,_2#3], [_1#2, _2#3]

at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.org$apache$spark$sql$catalyst$analysis$UnsupportedOperationChecker$$throwError(UnsupportedOperationChecker.scala:297)
at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.checkForStreaming(UnsupportedOperationChecker.scala:115)
at org.apache.spark.sql.streaming.StreamingQueryManager.createQuery(StreamingQueryManager.scala:232)
at org.apache.spark.sql.streaming.StreamingQueryManager.startQuery(StreamingQueryManager.scala:278)
at org.apache.spark.sql.streaming.DataStreamWriter.start(DataStreamWriter.scala:247)
... 57 elided

最佳答案

来自 Structured Streaming Programming Guide - 其他查询(不包括聚合, mapGroupsWithStateflatMapGroupsWithState ):

Complete mode not supported as it is infeasible to keep all unaggregated data in the Result Table.



要回答这个问题:

What would happen if Spark allowed Complete output mode with no aggregations in a streaming query?



可能是OOM。

令人费解的部分是为什么 dropDuplicates("id")未标记为聚合。

关于apache-spark - 为什么Complete输出模式需要聚合?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45756997/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com