gpt4 book ai didi

python - 将模型二维拟合到 Python 中的图像

转载 作者:行者123 更新时间:2023-12-03 22:32:44 25 4
gpt4 key购买 nike

我想用 Python 中的图像拟合模型(这里是 2D 高斯模型,但也可以是其他模型)。

尝试使用 scipy.optimize.curve_fit 我有一些问题。见下文。

让我们从一些函数开始:

import numpy as np
from scipy.optimize import curve_fit
from scipy.signal import argrelmax

import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.patches import Circle

from tifffile import TiffFile

# 2D Gaussian model
def func(xy, x0, y0, sigma, H):

x, y = xy

A = 1 / (2 * sigma**2)
I = H * np.exp(-A * ( (x - x0)**2 + (y - y0)**2))
return I

# Generate 2D gaussian
def generate(x0, y0, sigma, H):

x = np.arange(0, max(x0, y0) * 2 + sigma, 1)
y = np.arange(0, max(x0, y0) * 2 + sigma, 1)
xx, yy = np.meshgrid(x, y)

I = func((xx, yy), x0=x0, y0=y0, sigma=sigma, H=H)

return xx, yy, I

def fit(image, with_bounds):

# Prepare fitting
x = np.arange(0, image.shape[1], 1)
y = np.arange(0, image.shape[0], 1)
xx, yy = np.meshgrid(x, y)

# Guess intial parameters
x0 = int(image.shape[0]) # Middle of the image
y0 = int(image.shape[1]) # Middle of the image
sigma = max(*image.shape) * 0.1 # 10% of the image
H = np.max(image) # Maximum value of the image
initial_guess = [x0, y0, sigma, H]

# Constraints of the parameters
if with_bounds:
lower = [0, 0, 0, 0]
upper = [image.shape[0], image.shape[1], max(*image.shape), image.max() * 2]
bounds = [lower, upper]
else:
bounds = [-np.inf, np.inf]

pred_params, uncert_cov = curve_fit(func, (xx.ravel(), yy.ravel()), image.ravel(),
p0=initial_guess, bounds=bounds)

# Get residual
predictions = func((xx, yy), *pred_params)
rms = np.sqrt(np.mean((image.ravel() - predictions.ravel())**2))

print("True params : ", true_parameters)
print("Predicted params : ", pred_params)
print("Residual : ", rms)

return pred_params

def plot(image, params):

fig, ax = plt.subplots()
ax.imshow(image, cmap=plt.cm.BrBG, interpolation='nearest', origin='lower')

ax.scatter(params[0], params[1], s=100, c="red", marker="x")

circle = Circle((params[0], params[1]), params[2], facecolor='none',
edgecolor="red", linewidth=1, alpha=0.8)
ax.add_patch(circle)
# Simulate and fit model
true_parameters = [50, 60, 10, 500]
xx, yy, image = generate(*true_parameters)

# The fit performs well without bounds
params = fit(image, with_bounds=False)
plot(image, params)

输出:

True params :  [50, 60, 10, 500]
Predicted params : [ 50. 60. 10. 500.]
Residual : 0.0

enter image description here

现在,如果我们对边界(或约束)进行同样的拟合。

# The fit is really bad with bounds
params = fit(image, with_bounds=True)
plot(image, params)

输出:

True params :  [50, 60, 10, 500]
Predicted params : [ 130. 130. 0.72018729 1.44948159]
Residual : 68.1713019773

enter image description here

为什么添加边界时拟合效果不佳?


现在还有一件事我不明白。为什么这种拟合在应用于真实数据时不稳健?见下文。

# Load some real data
image = TiffFile("../data/spot.tif").asarray()
plt.imshow(image, aspect='equal', origin='lower', interpolation="none", cmap=plt.cm.BrBG)
plt.colorbar()

enter image description here

# Fit is not possible without bounds
params = fit(image, with_bounds=False)
plot(image, params)

输出:

---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-14-3187b53d622d> in <module>()
1 # Fit is not possible without bounds
----> 2 params = fit(image, with_bounds=False)
3 plot(image, params)

<ipython-input-11-f14c9dec72f2> in fit(image, with_bounds)
54
55 pred_params, uncert_cov = curve_fit(func, (xx.ravel(), yy.ravel()), image.ravel(),
---> 56 p0=initial_guess, bounds=bounds)
57
58 # Get residual

/home/hadim/local/conda/envs/ws/lib/python3.5/site-packages/scipy/optimize/minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, **kwargs)
653 cost = np.sum(infodict['fvec'] ** 2)
654 if ier not in [1, 2, 3, 4]:
--> 655 raise RuntimeError("Optimal parameters not found: " + errmsg)
656 else:
657 res = least_squares(func, p0, args=args, bounds=bounds, method=method,

RuntimeError: Optimal parameters not found: Number of calls to function has reached maxfev = 1000.

# Fit works but is not accurate at all with bounds
params = fit(image, with_bounds=True)
plot(image, params)

输出:

True params :  [50, 60, 10, 500]
Predicted params : [ 19.31770886 10.52153346 37. 1296.22524248]
Residual : 83.1944464761

enter image description here

最佳答案

一些事情,首先,你的初始参数 x0y0 是错误的,它们不在图像的中间,而是在边界,它们应该是

x0 = int(image.shape[0])/2 # Middle of the image
y0 = int(image.shape[1])/2 # Middle of the image

将它们放在图像的边界可能会在受限情况下产生一些问题,因为没有给它在某些方向上移动的空间。这是我的推测,取决于拟合方法。

另外说到方法,curve_fit 可以使用以下三种方法之一:lmtrfdogbox 来自scipy least_squares documentation :

  • ‘trf’ : Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  • ‘dogbox’ : dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.
  • ‘lm’ : Levenberg-Marquardt algorithm as implemented in MINPACK. Doesn’t handle bounds and sparse Jacobians. Usually the most efficient method for small unconstrained problems.

curve_fit will use different methods for bounded and unbounded cases

Default is ‘lm’ for unconstrained problems and ‘trf’ if bounds are provided

所以我建议定义一个要使用的方法,在更正初始参数后,我用 trfdogbox 都得到了很好的结果,但是你应该检查哪个方法更好地处理您的真实数据。

关于python - 将模型二维拟合到 Python 中的图像,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36523301/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com