gpt4 book ai didi

python - Tensorflow Keras - AttributeError : Layer features has no inbound nodes

转载 作者:行者123 更新时间:2023-12-03 22:13:17 25 4
gpt4 key购买 nike

Tensorflow 版本:1.11.0

我正在尝试将 TensorBoard 与 Tensorflow keras 模型一起用于投影仪可视化。
我收到 AttributeError: Layer features has no Inbound nodes。
我不确定为什么我在下面的简单代码中收到此错误。我确实在谷歌上搜索了错误,但找不到正确的解决方案来修复它。

from os import makedirs
from os.path import exists, join
import tensorflow as tf
mnist = tf.keras.datasets.mnist

import numpy as np


(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation=tf.nn.relu, name='features'),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

log_dir = "./logs"
with open(join(log_dir, 'metadata.tsv'), 'w') as f:
np.savetxt(f, y_test)

from tensorflow.keras.callbacks import TensorBoard

tf_board_callback = TensorBoard(
log_dir=log_dir,
batch_size=32,
embeddings_freq=1,
embeddings_layer_names=['features'],
embeddings_metadata='metadata.tsv',
embeddings_data=x_test
)

model.fit(x_train, y_train, epochs=5, callbacks=[tf_board_callback])

最佳答案

在 Keras 中定义网络时,添加的第一层需要添加 input_shape。

请参阅此处的文档:https://keras.io/getting-started/sequential-model-guide/#specifying-the-input-shape

所以对于 MNIST,你应该有类似 input_shape=(28,28,1)

这里有一个很好的例子:https://www.kaggle.com/adityaecdrid/mnist-with-keras-for-beginners-99457

关于python - Tensorflow Keras - AttributeError : Layer features has no inbound nodes,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52754453/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com