gpt4 book ai didi

python - networkx:如何设置自定义成本函数?

转载 作者:行者123 更新时间:2023-12-03 21:47:12 25 4
gpt4 key购买 nike

我正在关注 networkx 文档( 1 ),我想为成本函数设置不同的惩罚(例如 node_del_costnode_ins_cost )。比方说,我想通过三点惩罚删除/插入节点。
到目前为止,我已经创建了两个无向图,它们因标记节点 C(更新代码)而异。

import networkx as nx

G=nx.Graph()
G.add_nodes_from([("A", {'label':'CDKN1A'}), ("B", {'label':'CUL4A'}),
("C", {'label':'RB1'})])

G.add_edges_from([("A","B"), ("A","C")])

H=nx.Graph()
H.add_nodes_from([("A", {'label':'CDKN1A'}), ("B", {'label':'CUL4A'}),
("C", {'label':'AKT'})])
H.add_edges_from([("A","B"), ("A","C")])

# arguments
# node_match – a function that returns True if node n1 in G1 and n2 in G2 should be considered equal during matching.
# ignored if node_subst_cost is specified
def node_match(node1, node2):
return node1['label']==node2['label']

# node_subst_cost - a function that returns the costs of node substitution
# overrides node_match if specified.
def node_subst_cost(node1, node2):
return node1['label']==node2['label']

# node_del_cost - a function that returns the costs of node deletion
# if node_del_cost is not specified then default node deletion cost of 1 is used.
def node_del_cost(node1):
return node1['label']==3

# node_ins_cost - a function that returns the costs of node insertion
# if node_ins_cost is not specified then default node insertion cost of 1 is used.
def node_ins_cost(node2):
return node2['label']==3

paths, cost = nx.optimal_edit_paths(G, H, node_match=None, edge_match=None,
node_subst_cost=node_subst_cost, node_del_cost=node_del_cost, node_ins_cost=node_ins_cost,
edge_subst_cost=None, edge_del_cost=None, edge_ins_cost=None,
upper_bound=None)

# length of the path
print(len(paths))

# optimal edit path cost (graph edit distance).
print(cost)
这给我 2.0作为最优路径成本和 7.0作为路径的长度。但是,我不完全理解为什么,因为我将惩罚设置为 3.0,因此预计编辑距离为 3。
谢谢你的建议!
奥尔哈

最佳答案

如文档中所述,当您传递 node_subst_cost 时函数作为参数,它忽略 node_match函数并为任何替换操作应用成本,即使节点相等。所以我建议你首先评估 node_subst_cost 中的节点相等性函数,然后相应地应用成本:

def node_subst_cost(node1, node2):
# check if the nodes are equal, if yes then apply no cost, else apply 3
if node1['label'] == node2['label']:
return 0
return 3


def node_del_cost(node):
return 3 # here you apply the cost for node deletion


def node_ins_cost(node):
return 3 # here you apply the cost for node insertion


paths, cost = nx.optimal_edit_paths(
G,
H,
node_subst_cost=node_subst_cost,
node_del_cost=node_del_cost,
node_ins_cost=node_ins_cost
)

print(cost) # which will return 3.0

您也可以对边缘操作执行相同的操作。

关于python - networkx:如何设置自定义成本函数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63927196/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com