- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
如何根据 Pandas 中某些列的值从 DataFrame 中选择行?
在 SQL 中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
最佳答案
要选择列值等于标量的行,some_value
, 使用 ==
:
df.loc[df['column_name'] == some_value]
要选择列值在可迭代中的行,some_values
, 使用 isin
:
df.loc[df['column_name'].isin(some_values)]
用&
组合多个条件:
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
注意括号。由于 Python 的 operator precedence rules , &
比 <=
结合得更紧密和 >=
.因此,最后一个例子中的括号是必要的。没有括号
df['column_name'] >= A & df['column_name'] <= B
被解析为
df['column_name'] >= (A & df['column_name']) <= B
结果是 Truth value of a Series is ambiguous error .
选择列值不等于的行some_value
, 使用 !=
:
df.loc[df['column_name'] != some_value]
isin
返回一个 bool 系列,因此要在 some_values
中选择值为 not 的行, 使用 ~
否定 bool 系列:
df.loc[~df['column_name'].isin(some_values)]
例如,
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2})
print(df)
# A B C D
# 0 foo one 0 0
# 1 bar one 1 2
# 2 foo two 2 4
# 3 bar three 3 6
# 4 foo two 4 8
# 5 bar two 5 10
# 6 foo one 6 12
# 7 foo three 7 14
print(df.loc[df['A'] == 'foo'])
产量
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
如果您有多个要包含的值,请将它们放在列出(或更一般地,任何可迭代的)并使用 isin
:
print(df.loc[df['B'].isin(['one','three'])])
产量
A B C D
0 foo one 0 0
1 bar one 1 2
3 bar three 3 6
6 foo one 6 12
7 foo three 7 14
但是请注意,如果您希望多次执行此操作,则效率更高先做索引,再用df.loc
:
df = df.set_index(['B'])
print(df.loc['one'])
产量
A C D
B
one foo 0 0
one bar 1 2
one foo 6 12
或者,要包含索引中的多个值,请使用 df.index.isin
:
df.loc[df.index.isin(['one','two'])]
产量
A C D
B
one foo 0 0
one bar 1 2
two foo 2 4
two foo 4 8
two bar 5 10
one foo 6 12
关于python - 如何根据列值从 DataFrame 中选择行?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47024305/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!