gpt4 book ai didi

moving-average - Clickhouse移动平均线

转载 作者:行者123 更新时间:2023-12-03 21:21:34 53 4
gpt4 key购买 nike

输入:
Clickhouse

表A
business_dttm(日期时间)
金额( float )

我需要在每个 business_dttm 上计算 15 分钟(或最后 3 条记录)的移动总和

例如

amount business_dttm     moving sum
0.3 2018-11-19 13:00:00
0.3 2018-11-19 13:05:00
0.4 2018-11-19 13:10:00 1
0.5 2018-11-19 13:15:00 1.2
0.6 2018-11-19 13:15:00 1.5
0.7 2018-11-19 13:20:00 1.8
0.8 2018-11-19 13:25:00 2.1
0.9 2018-11-19 13:25:00 2.4
0.5 2018-11-19 13:30:00 2.2

不幸的是,我们没有窗口函数,并且在 Clickhouse 中没有同等条件地加入

如果没有交叉连接和条件,我该怎么做?

最佳答案

如果窗口大小可数小,你可以做这样的事情

SELECT
sum(window.2) AS amount,
max(dttm) AS business_dttm,
sum(amt) AS moving_sum
FROM
(
SELECT
arrayJoin([(rowNumberInAllBlocks(), amount), (rowNumberInAllBlocks() + 1, 0), (rowNumberInAllBlocks() + 2, 0)]) AS window,
amount AS amt,
business_dttm AS dttm
FROM
(
SELECT
amount,
business_dttm
FROM A
ORDER BY business_dttm
)
)
GROUP BY window.1
HAVING count() = 3
ORDER BY window.1;

前两行将被忽略,因为 ClickHouse 不会将聚合折叠为 null。您可以稍后添加它们。

更新:

仍然可以计算任意窗口大小的移动总和。调音 window_size随心所欲(本例中为 3)。
-- Note, rowNumberInAllBlocks is incorrect if declared inside with block due to being stateful
WITH
(
SELECT arrayCumSum(groupArray(amount))
FROM
(
SELECT
amount
FROM A
ORDER BY business_dttm
)
) AS arr,
3 AS window_size
SELECT
amount,
business_dttm,
if(rowNumberInAllBlocks() + 1 < window_size, NULL, arr[rowNumberInAllBlocks() + 1] - arr[rowNumberInAllBlocks() + 1 - window_size]) AS moving_sum
FROM
(
SELECT
amount,
business_dttm
FROM A
ORDER BY business_dttm
)

或者这个变种
SELECT
amount,
business_dttm,
moving_sum
FROM
(
WITH 3 AS window_size
SELECT
groupArray(amount) AS amount_arr,
groupArray(business_dttm) AS business_dttm_arr,
arrayCumSum(amount_arr) AS amount_cum_arr,
arrayMap(i -> if(i < window_size, NULL, amount_cum_arr[i] - amount_cum_arr[(i - window_size)]), arrayEnumerate(amount_cum_arr)) AS moving_sum_arr
FROM
(
SELECT *
FROM A
ORDER BY business_dttm ASC
)
)
ARRAY JOIN
amount_arr AS amount,
business_dttm_arr AS business_dttm,
moving_sum_arr AS moving_sum

公平警告,这两种方法都远非最佳,但它展示了 ClickHouse 超越 SQL 的独特功能。

关于moving-average - Clickhouse移动平均线,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53416531/

53 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com