- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
问题:在 Pandas 中删除重复项时,您可以指定要保留哪些列。 Spark Dataframes 中是否有等价物?
Pandas :
df.sort_values('actual_datetime', ascending=False).drop_duplicates(subset=['scheduled_datetime', 'flt_flightnumber'], keep='first')
df.orderBy(['actual_datetime']).dropDuplicates(subset=['scheduled_datetime', 'flt_flightnumber'])
def get_key(x):
return "{0}{1}".format(x[6],x[17])
df= df.map(lambda x: (get_key(x),x)).reduceByKey(lambda x,y: (x))
最佳答案
每个人都说 dropDuplicates 保持第一次出现 - 这不是严格正确的。
dropDuplicates 保留排序操作的“第一次出现” - 仅当有 1 个分区时。请参阅下面的一些示例。
然而,这对于大多数 Spark 数据集来说并不实用。所以我还包括一个使用窗口函数+排序+排名+过滤器的“第一次出现”删除重复操作的例子。
例如,请参阅帖子底部。
这在 Spark 2.4.0 中使用 pyspark 进行了测试。
dropDuplicates 示例
import pandas as pd
# generating some example data with pandas, will convert to spark df below
df1 = pd.DataFrame({'col1':range(0,5)})
df1['datestr'] = '2018-01-01'
df2 = pd.DataFrame({'col1':range(0,5)})
df2['datestr'] = '2018-02-01'
df3 = pd.DataFrame({'col1':range(0,5)})
df3['datestr'] = '2018-03-01'
dfall = pd.concat([df1,df2,df3])
print(dfall)
col1 datestr
0 0 2018-01-01
1 1 2018-01-01
2 2 2018-01-01
3 3 2018-01-01
4 4 2018-01-01
0 0 2018-02-01
1 1 2018-02-01
2 2 2018-02-01
3 3 2018-02-01
4 4 2018-02-01
0 0 2018-03-01
1 1 2018-03-01
2 2 2018-03-01
3 3 2018-03-01
4 4 2018-03-01
# first example
# does not give first (based on datestr)
(spark.createDataFrame(dfall)
.orderBy('datestr')
.dropDuplicates(subset = ['col1'])
.show()
)
# dropDuplicates NOT based on occurrence of sorted datestr
+----+----------+
|col1| datestr|
+----+----------+
| 0|2018-03-01|
| 1|2018-02-01|
| 3|2018-02-01|
| 2|2018-02-01|
| 4|2018-01-01|
+----+----------+
# second example
# testing what happens with repartition
(spark.createDataFrame(dfall)
.orderBy('datestr')
.repartition('datestr')
.dropDuplicates(subset = ['col1'])
.show()
)
# dropDuplicates NOT based on occurrence of sorted datestr
+----+----------+
|col1| datestr|
+----+----------+
| 0|2018-02-01|
| 1|2018-01-01|
| 3|2018-02-01|
| 2|2018-02-01|
| 4|2018-02-01|
+----+----------+
#third example
# testing with coalesce(1)
(spark
.createDataFrame(dfall)
.orderBy('datestr')
.coalesce(1)
.dropDuplicates(subset = ['col1'])
.show()
)
# dropDuplicates based on occurrence of sorted datestr
+----+----------+
|col1| datestr|
+----+----------+
| 0|2018-01-01|
| 1|2018-01-01|
| 2|2018-01-01|
| 3|2018-01-01|
| 4|2018-01-01|
+----+----------+
# fourth example
# testing with reverse sort then coalesce(1)
(spark
.createDataFrame(dfall)
.orderBy('datestr', ascending = False)
.coalesce(1)
.dropDuplicates(subset = ['col1'])
.show()
)
# dropDuplicates based on occurrence of sorted datestr```
+----+----------+
|col1| datestr|
+----+----------+
| 0|2018-03-01|
| 1|2018-03-01|
| 2|2018-03-01|
| 3|2018-03-01|
| 4|2018-03-01|
+----+----------+
# generating some example data with pandas
df1 = pd.DataFrame({'col1':range(0,5)})
df1['datestr'] = '2018-01-01'
df2 = pd.DataFrame({'col1':range(0,5)})
df2['datestr'] = '2018-02-01'
df3 = pd.DataFrame({'col1':range(0,5)})
df3['datestr'] = '2018-03-01'
dfall = pd.concat([df1,df2,df3])
# into spark df
df_s = (spark.createDataFrame(dfall))
from pyspark.sql import Window
from pyspark.sql.functions import rank
window = Window.partitionBy("col1").orderBy("datestr")
(df_s.withColumn('rank', rank().over(window))
.filter(col('rank') == 1)
.drop('rank')
.show()
)
+----+----------+
|col1| datestr|
+----+----------+
| 0|2018-01-01|
| 1|2018-01-01|
| 3|2018-01-01|
| 2|2018-01-01|
| 4|2018-01-01|
+----+----------+
# however this fails if ties/duplicates exist in the windowing paritions
# and so a tie breaker for the 'rank' function must be added
# generating some example data with pandas, will convert to spark df below
df1 = pd.DataFrame({'col1':range(0,5)})
df1['datestr'] = '2018-01-01'
df2 = pd.DataFrame({'col1':range(0,5)})
df2['datestr'] = '2018-01-01' # note duplicates in this dataset
df3 = pd.DataFrame({'col1':range(0,5)})
df3['datestr'] = '2018-03-01'
dfall = pd.concat([df1,df2,df3])
print(dfall)
col1 datestr
0 0 2018-01-01
1 1 2018-01-01
2 2 2018-01-01
3 3 2018-01-01
4 4 2018-01-01
0 0 2018-01-01
1 1 2018-01-01
2 2 2018-01-01
3 3 2018-01-01
4 4 2018-01-01
0 0 2018-03-01
1 1 2018-03-01
2 2 2018-03-01
3 3 2018-03-01
4 4 2018-03-01
# this will fail, since duplicates exist within the window partitions
# and no way to specify ranking style exists in pyspark rank() fn
window = Window.partitionBy("col1").orderBy("datestr")
(df_s.withColumn('rank', rank().over(window))
.filter(col('rank') == 1)
.drop('rank')
.show()
)
+----+----------+
|col1| datestr|
+----+----------+
| 0|2018-01-01|
| 0|2018-01-01|
| 1|2018-01-01|
| 1|2018-01-01|
| 3|2018-01-01|
| 3|2018-01-01|
| 2|2018-01-01|
| 2|2018-01-01|
| 4|2018-01-01|
| 4|2018-01-01|
+----+----------+
# to deal with ties within window partitions, a tiebreaker column is added
from pyspark.sql import Window
from pyspark.sql.functions import rank, col, monotonically_increasing_id
window = Window.partitionBy("col1").orderBy("datestr",'tiebreak')
(df_s
.withColumn('tiebreak', monotonically_increasing_id())
.withColumn('rank', rank().over(window))
.filter(col('rank') == 1).drop('rank','tiebreak')
.show()
)
+----+----------+
|col1| datestr|
+----+----------+
| 0|2018-01-01|
| 1|2018-01-01|
| 3|2018-01-01|
| 2|2018-01-01|
| 4|2018-01-01|
+----+----------+
关于apache-spark - Spark 数据帧删除重复项并保持第一,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38687212/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!