- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
dfdata.Speed.rolling('60T', closed='right').sum()
DateTime DateTime Speed distance IDs totalHours
2011-01-01 00:19:00 2011-01-01 00:19:00 0.041916 0.000710 19 0.016944
2011-01-01 00:20:00 2011-01-01 00:20:00 0.033719 0.000562 19 0.016667
2011-01-01 00:20:59 2011-01-01 00:20:59 0.153553 0.002517 19 0.016389
2011-01-01 00:21:59 2011-01-01 00:21:59 0.142272 0.002371 19 0.016667
2011-01-01 00:23:00 2011-01-01 00:23:00 0.033166 0.000562 19 0.016944
2011-01-01 00:24:00 2011-01-01 00:24:00 0.037843 0.000631 19 0.016667
2011-01-01 00:26:00 2011-01-01 00:26:00 0.050262 0.001675 19 0.033333
2011-01-01 00:27:00 2011-01-01 00:27:00 0.032249 0.000537 19 0.016667
2011-01-01 00:27:59 2011-01-01 00:27:59 0.180206 0.002953 19 0.016389
2011-01-01 00:29:00 2011-01-01 00:29:00 0.133477 0.002262 19 0.016944
2011-01-01 00:30:00 2011-01-01 00:30:00 0.128053 0.002134 19 0.016667
2011-01-01 00:30:59 2011-01-01 00:30:59 0.041964 0.000688 19 0.016389
2011-01-01 00:32:00 2011-01-01 00:32:00 0.072529 0.001229 19 0.016944
2011-01-01 00:33:00 2011-01-01 00:33:00 0.052437 0.000874 19 0.016667
2011-01-01 00:33:59 2011-01-01 00:33:59 0.033903 0.000556 19 0.016389
2011-01-01 00:35:00 2011-01-01 00:35:00 0.060076 0.001018 19 0.016944
2011-01-01 00:36:00 2011-01-01 00:36:00 0.121709 0.002028 19 0.016667
2011-01-01 00:36:59 2011-01-01 00:36:59 0.090517 0.001483 19 0.016389
2011-01-01 00:37:59 2011-01-01 00:37:59 0.088304 0.001472 19 0.016667
2011-01-01 00:39:00 2011-01-01 00:39:00 0.100654 0.001706 19 0.016944
2011-01-01 00:40:00 2011-01-01 00:40:00 0.034839 0.000581 19 0.016667
2011-01-01 00:40:59 2011-01-01 00:40:59 0.164753 0.002700 19 0.016389
2011-01-01 00:42:00 2011-01-01 00:42:00 0.214163 0.003629 19 0.016944
2011-01-01 00:43:00 2011-01-01 00:43:00 0.283706 0.004728 19 0.016667
2011-01-01 00:45:00 2011-01-01 00:45:00 0.055676 0.001856 19 0.033333
2011-01-01 00:46:00 2011-01-01 00:46:00 0.138059 0.002301 19 0.016667
2011-01-01 00:46:59 2011-01-01 00:46:59 0.339829 0.005569 19 0.016389
2011-01-01 00:48:00 2011-01-01 00:48:00 0.169921 0.002879 19 0.016944
2011-01-01 00:49:00 2011-01-01 00:49:00 0.072382 0.001206 19 0.016667
2011-01-01 00:49:59 2011-01-01 00:49:59 0.029009 0.000475 19 0.016389
--------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-59-3224ac27b0b8> in <module>()
1 # dfdata.Speed.rolling('60T', closed='right').sum()
----> 2 dfdata.Speed.rolling('60T', closed='right').sum()
~/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py in rolling(self, window, min_periods, freq, center, win_type, on, axis, closed)
6193 min_periods=min_periods, freq=freq,
6194 center=center, win_type=win_type,
-> 6195 on=on, axis=axis, closed=closed)
6196
6197 cls.rolling = rolling
~/anaconda3/lib/python3.6/site-packages/pandas/core/window.py in rolling(obj, win_type, **kwds)
2050 return Window(obj, win_type=win_type, **kwds)
2051
-> 2052 return Rolling(obj, **kwds)
2053
2054
~/anaconda3/lib/python3.6/site-packages/pandas/core/window.py in __init__(self, obj, window, min_periods, freq, center, win_type, axis, on, closed, **kwargs)
84 self.win_freq = None
85 self.axis = obj._get_axis_number(axis) if axis is not None else None
---> 86 self.validate()
87
88 @property
~/anaconda3/lib/python3.6/site-packages/pandas/core/window.py in validate(self)
1085 timedelta))):
1086
-> 1087 self._validate_monotonic()
1088 freq = self._validate_freq()
1089
~/anaconda3/lib/python3.6/site-packages/pandas/core/window.py in _validate_monotonic(self)
1117 formatted = self.on or 'index'
1118 raise ValueError("{0} must be "
-> 1119 "monotonic".format(formatted))
1120
1121 def _validate_freq(self):
ValueError: index must be monotonic
最佳答案
我刚刚复制了您的示例,创建了一个新的 CSV (data.csv) 文件来尝试。最后我创建了新的 DataFrame (df) 并执行了您的语句,它起作用了。如果您遇到任何问题,请查看并发表评论。
注:请检查您的 pandas
版本,我的是 0.23.4
(使用 Python 3.6.5)和 this是文档的链接。
data.csv
Datetime,Speed,distance,IDs,totalHours
2011-01-01 00:19:00,0.041916,0.000710,19,0.016944
2011-01-01 00:20:00,0.033719,0.000562,19,0.016667
2011-01-01 00:20:59,0.153553,0.002517,19,0.016389
2011-01-01 00:21:59,0.142272,0.002371,19,0.016667
2011-01-01 00:23:00,0.033166,0.000562,19,0.016944
2011-01-01 00:24:00,0.037843,0.000631,19,0.016667
2011-01-01 00:26:00,0.050262,0.001675,19,0.033333
2011-01-01 00:27:00,0.032249,0.000537,19,0.016667
2011-01-01 00:27:59,0.180206,0.002953,19,0.016389
2011-01-01 00:29:00,0.133477,0.002262,19,0.016944
2011-01-01 00:30:00,0.128053,0.002134,19,0.016667
2011-01-01 00:30:59,0.041964,0.000688,19,0.016389
2011-01-01 00:32:00,0.072529,0.001229,19,0.016944
2011-01-01 00:33:00,0.052437,0.000874,19,0.016667
2011-01-01 00:33:59,0.033903,0.000556,19,0.016389
2011-01-01 00:35:00,0.060076,0.001018,19,0.016944
2011-01-01 00:36:00,0.121709,0.002028,19,0.016667
2011-01-01 00:36:59,0.090517,0.001483,19,0.016389
2011-01-01 00:37:59,0.088304,0.001472,19,0.016667
2011-01-01 00:39:00,0.100654,0.001706,19,0.016944
2011-01-01 00:40:00,0.034839,0.000581,19,0.016667
2011-01-01 00:40:59,0.164753,0.002700,19,0.016389
2011-01-01 00:42:00,0.214163,0.003629,19,0.016944
2011-01-01 00:43:00,0.283706,0.004728,19,0.016667
2011-01-01 00:45:00,0.055676,0.001856,19,0.033333
2011-01-01 00:46:00,0.138059,0.002301,19,0.016667
2011-01-01 00:46:59,0.339829,0.005569,19,0.016389
2011-01-01 00:48:00,0.169921,0.002879,19,0.016944
2011-01-01 00:49:00,0.072382,0.001206,19,0.016667
2011-01-01 00:49:59,0.029009,0.000475,19,0.016389
Statements executed on Python's interactive terminal
>>> import pandas as pd
>>>
>>> df = pd.read_csv("data.csv")
>>> df
Datetime Speed distance IDs totalHours
0 2011-01-01 00:19:00 0.041916 0.000710 19 0.016944
1 2011-01-01 00:20:00 0.033719 0.000562 19 0.016667
2 2011-01-01 00:20:59 0.153553 0.002517 19 0.016389
3 2011-01-01 00:21:59 0.142272 0.002371 19 0.016667
4 2011-01-01 00:23:00 0.033166 0.000562 19 0.016944
5 2011-01-01 00:24:00 0.037843 0.000631 19 0.016667
6 2011-01-01 00:26:00 0.050262 0.001675 19 0.033333
7 2011-01-01 00:27:00 0.032249 0.000537 19 0.016667
8 2011-01-01 00:27:59 0.180206 0.002953 19 0.016389
9 2011-01-01 00:29:00 0.133477 0.002262 19 0.016944
10 2011-01-01 00:30:00 0.128053 0.002134 19 0.016667
11 2011-01-01 00:30:59 0.041964 0.000688 19 0.016389
12 2011-01-01 00:32:00 0.072529 0.001229 19 0.016944
13 2011-01-01 00:33:00 0.052437 0.000874 19 0.016667
14 2011-01-01 00:33:59 0.033903 0.000556 19 0.016389
15 2011-01-01 00:35:00 0.060076 0.001018 19 0.016944
16 2011-01-01 00:36:00 0.121709 0.002028 19 0.016667
17 2011-01-01 00:36:59 0.090517 0.001483 19 0.016389
18 2011-01-01 00:37:59 0.088304 0.001472 19 0.016667
19 2011-01-01 00:39:00 0.100654 0.001706 19 0.016944
20 2011-01-01 00:40:00 0.034839 0.000581 19 0.016667
21 2011-01-01 00:40:59 0.164753 0.002700 19 0.016389
22 2011-01-01 00:42:00 0.214163 0.003629 19 0.016944
23 2011-01-01 00:43:00 0.283706 0.004728 19 0.016667
24 2011-01-01 00:45:00 0.055676 0.001856 19 0.033333
25 2011-01-01 00:46:00 0.138059 0.002301 19 0.016667
26 2011-01-01 00:46:59 0.339829 0.005569 19 0.016389
27 2011-01-01 00:48:00 0.169921 0.002879 19 0.016944
28 2011-01-01 00:49:00 0.072382 0.001206 19 0.016667
29 2011-01-01 00:49:59 0.029009 0.000475 19 0.016389
>>>
>>> df.index = pd.to_datetime(df.Datetime)
>>> df
Datetime Speed distance IDs totalHours
Datetime
2011-01-01 00:19:00 2011-01-01 00:19:00 0.041916 0.000710 19 0.016944
2011-01-01 00:20:00 2011-01-01 00:20:00 0.033719 0.000562 19 0.016667
2011-01-01 00:20:59 2011-01-01 00:20:59 0.153553 0.002517 19 0.016389
2011-01-01 00:21:59 2011-01-01 00:21:59 0.142272 0.002371 19 0.016667
2011-01-01 00:23:00 2011-01-01 00:23:00 0.033166 0.000562 19 0.016944
2011-01-01 00:24:00 2011-01-01 00:24:00 0.037843 0.000631 19 0.016667
2011-01-01 00:26:00 2011-01-01 00:26:00 0.050262 0.001675 19 0.033333
2011-01-01 00:27:00 2011-01-01 00:27:00 0.032249 0.000537 19 0.016667
2011-01-01 00:27:59 2011-01-01 00:27:59 0.180206 0.002953 19 0.016389
2011-01-01 00:29:00 2011-01-01 00:29:00 0.133477 0.002262 19 0.016944
2011-01-01 00:30:00 2011-01-01 00:30:00 0.128053 0.002134 19 0.016667
2011-01-01 00:30:59 2011-01-01 00:30:59 0.041964 0.000688 19 0.016389
2011-01-01 00:32:00 2011-01-01 00:32:00 0.072529 0.001229 19 0.016944
2011-01-01 00:33:00 2011-01-01 00:33:00 0.052437 0.000874 19 0.016667
2011-01-01 00:33:59 2011-01-01 00:33:59 0.033903 0.000556 19 0.016389
2011-01-01 00:35:00 2011-01-01 00:35:00 0.060076 0.001018 19 0.016944
2011-01-01 00:36:00 2011-01-01 00:36:00 0.121709 0.002028 19 0.016667
2011-01-01 00:36:59 2011-01-01 00:36:59 0.090517 0.001483 19 0.016389
2011-01-01 00:37:59 2011-01-01 00:37:59 0.088304 0.001472 19 0.016667
2011-01-01 00:39:00 2011-01-01 00:39:00 0.100654 0.001706 19 0.016944
2011-01-01 00:40:00 2011-01-01 00:40:00 0.034839 0.000581 19 0.016667
2011-01-01 00:40:59 2011-01-01 00:40:59 0.164753 0.002700 19 0.016389
2011-01-01 00:42:00 2011-01-01 00:42:00 0.214163 0.003629 19 0.016944
2011-01-01 00:43:00 2011-01-01 00:43:00 0.283706 0.004728 19 0.016667
2011-01-01 00:45:00 2011-01-01 00:45:00 0.055676 0.001856 19 0.033333
2011-01-01 00:46:00 2011-01-01 00:46:00 0.138059 0.002301 19 0.016667
2011-01-01 00:46:59 2011-01-01 00:46:59 0.339829 0.005569 19 0.016389
2011-01-01 00:48:00 2011-01-01 00:48:00 0.169921 0.002879 19 0.016944
2011-01-01 00:49:00 2011-01-01 00:49:00 0.072382 0.001206 19 0.016667
2011-01-01 00:49:59 2011-01-01 00:49:59 0.029009 0.000475 19 0.016389
>>>
>>>
>>> df.Speed.rolling('60T', closed='right').sum()
Datetime
2011-01-01 00:19:00 0.041916
2011-01-01 00:20:00 0.075635
2011-01-01 00:20:59 0.229188
2011-01-01 00:21:59 0.371460
2011-01-01 00:23:00 0.404626
2011-01-01 00:24:00 0.442469
2011-01-01 00:26:00 0.492731
2011-01-01 00:27:00 0.524980
2011-01-01 00:27:59 0.705186
2011-01-01 00:29:00 0.838663
2011-01-01 00:30:00 0.966716
2011-01-01 00:30:59 1.008680
2011-01-01 00:32:00 1.081209
2011-01-01 00:33:00 1.133646
2011-01-01 00:33:59 1.167549
2011-01-01 00:35:00 1.227625
2011-01-01 00:36:00 1.349334
2011-01-01 00:36:59 1.439851
2011-01-01 00:37:59 1.528155
2011-01-01 00:39:00 1.628809
2011-01-01 00:40:00 1.663648
2011-01-01 00:40:59 1.828401
2011-01-01 00:42:00 2.042564
2011-01-01 00:43:00 2.326270
2011-01-01 00:45:00 2.381946
2011-01-01 00:46:00 2.520005
2011-01-01 00:46:59 2.859834
2011-01-01 00:48:00 3.029755
2011-01-01 00:49:00 3.102137
2011-01-01 00:49:59 3.131146
Name: Speed, dtype: float64
>>>
关于python-3.x - 值错误 : index must be monotonic,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54139380/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!