- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我们有一些夜间构建机器具有 cuda libraries已安装,但未安装支持 cuda 的 GPU。这些机器能够构建支持 cuda 的程序,但它们不能运行这些程序。
在我们的自动化夜间构建过程中,我们的 cmake 脚本使用 cmake 命令find_package(CUDA)
判断是否安装了cuda软件。这将设置 cmake 变量 CUDA_FOUND
在安装了 cuda 软件的平台上。这很棒,而且效果很好。当CUDA_FOUND
设置好了,就可以构建支持cuda的程序了。即使机器没有支持 cuda 的 GPU。
但是使用 cuda 的测试程序在非 GPU 的 cuda 机器上自然会失败,导致我们的夜间仪表板看起来“脏”。所以我希望 cmake 避免在这些机器上运行这些测试。但我仍然想在这些机器上构建 cuda 软件。
得到肯定后CUDA_FOUND
结果,我想测试是否存在实际的 GPU,然后设置一个变量,比如 CUDA_GPU_FOUND
, 来反射(reflect)这一点。
让 cmake 测试是否存在支持 cuda 的 gpu 的最简单方法是什么?
这需要在三个平台上运行:带有 MSVC 的 Windows、Mac 和 Linux。 (这就是我们首先使用 cmake 的原因)
编辑:关于如何编写程序来测试 GPU 是否存在的答案中有一些好看的建议。仍然缺少的是让 CMake 在配置时编译和运行该程序的方法。我怀疑 TRY_RUN
CMake 中的命令在这里很重要,但不幸的是该命令是 nearly undocumented ,我不知道如何使它工作。问题的这个 CMake 部分可能是一个更困难的问题。也许我应该把这个作为两个单独的问题来问......
最佳答案
这个问题的答案包括两部分:
has_cuda_gpu.c
:
#include <stdio.h>
#include <cuda_runtime.h>
int main() {
int deviceCount, device;
int gpuDeviceCount = 0;
struct cudaDeviceProp properties;
cudaError_t cudaResultCode = cudaGetDeviceCount(&deviceCount);
if (cudaResultCode != cudaSuccess)
deviceCount = 0;
/* machines with no GPUs can still report one emulation device */
for (device = 0; device < deviceCount; ++device) {
cudaGetDeviceProperties(&properties, device);
if (properties.major != 9999) /* 9999 means emulation only */
++gpuDeviceCount;
}
printf("%d GPU CUDA device(s) found\n", gpuDeviceCount);
/* don't just return the number of gpus, because other runtime cuda
errors can also yield non-zero return values */
if (gpuDeviceCount > 0)
return 0; /* success */
else
return 1; /* failure */
}
CMakeLists.txt
的一部分文件:
find_package(CUDA)
if(CUDA_FOUND)
try_run(RUN_RESULT_VAR COMPILE_RESULT_VAR
${CMAKE_BINARY_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/has_cuda_gpu.c
CMAKE_FLAGS
-DINCLUDE_DIRECTORIES:STRING=${CUDA_TOOLKIT_INCLUDE}
-DLINK_LIBRARIES:STRING=${CUDA_CUDART_LIBRARY}
COMPILE_OUTPUT_VARIABLE COMPILE_OUTPUT_VAR
RUN_OUTPUT_VARIABLE RUN_OUTPUT_VAR)
message("${RUN_OUTPUT_VAR}") # Display number of GPUs found
# COMPILE_RESULT_VAR is TRUE when compile succeeds
# RUN_RESULT_VAR is zero when a GPU is found
if(COMPILE_RESULT_VAR AND NOT RUN_RESULT_VAR)
set(CUDA_HAVE_GPU TRUE CACHE BOOL "Whether CUDA-capable GPU is present")
else()
set(CUDA_HAVE_GPU FALSE CACHE BOOL "Whether CUDA-capable GPU is present")
endif()
endif(CUDA_FOUND)
CUDA_HAVE_GPU
cmake 中的 bool 变量,随后可用于触发条件操作。
try_run
的第三个参数。 ,“绑定(bind)目录”。您可能应该始终将其设置为
${CMAKE_BINARY_DIR}
.特别是不要将其设置为
${CMAKE_CURRENT_BINARY_DIR}
如果您在项目的子目录中。 CMake 期望找到子目录
CMakeFiles/CMakeTmp
在 bindir 中,如果该目录不存在,则会出现错误。只需使用
${CMAKE_BINARY_DIR}
,这是这些子目录似乎自然存在的一个位置。
关于build-automation - 从 cmake 测试是否存在支持 cuda 的 GPU 的最简单方法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/2285185/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!