- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是Spark的新手。我已经输入了训练数据为4000x1800的文件。当我尝试训练此数据(编写python)时,出现以下错误:
15/11/14 22:39:13错误PythonRDD:Python工作程序意外退出(崩溃)
java.net.SocketException:对等重置连接:套接字写入错误
org.apache.spark.SparkException:由于阶段失败而导致作业中止:阶段0.0中的任务0失败1次,最近一次失败:阶段0.0中的任务0.0丢失(TID 0,本地
host):java.net.SocketException:对等重置连接:套接字写入错误
使用Spark 1.1.0。任何建议都会有很大帮助。
码:
from pyspark.mllib.classification import SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.linalg import Vectors
from pyspark import SparkContext
from pyspark import SparkConf, SparkContext
from numpy import array
#Train the model using feature matrix
# Load and parse the data
def parsePoint(line):
values = [float(x) for x in line.split(' ')]
return LabeledPoint(values[0], values[1:])
#create spark Context
conf = (SparkConf()
.setMaster("local")
.setAppName("My app")
.set("spark.executor.memory", "1g"))
sc = SparkContext(conf = conf)
data = sc.textFile("myfile.txt")
parsedData = data.map(parsePoint)
#Train SVM model
model = SVMWithSGD.train(parsedData,100)
14/11/15 22:38:38 INFO MemoryStore: ensureFreeSpace(32768) called with curMem=0, maxMem=278302556
14/11/15 22:38:38 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 32.0 KB, free 265.4 MB)
>>> parsedData = data.map(parsePoint)
>>> model = SVMWithSGD.train(parsedData,100)
14/11/15 22:39:12 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/11/15 22:39:12 WARN LoadSnappy: Snappy native library not loaded
14/11/15 22:39:12 INFO FileInputFormat: Total input paths to process : 1
14/11/15 22:39:13 INFO SparkContext: Starting job: runJob at PythonRDD.scala:296
14/11/15 22:39:13 INFO DAGScheduler: Got job 0 (runJob at PythonRDD.scala:296) with 1 output partitions (allowLocal=true)
14/11/15 22:39:13 INFO DAGScheduler: Final stage: Stage 0(runJob at PythonRDD.scala:296)
14/11/15 22:39:13 INFO DAGScheduler: Parents of final stage: List()
14/11/15 22:39:13 INFO DAGScheduler: Missing parents: List()
14/11/15 22:39:13 INFO DAGScheduler: Submitting Stage 0 (PythonRDD[3] at RDD at PythonRDD.scala:43), which has no missing parents
14/11/15 22:39:13 INFO MemoryStore: ensureFreeSpace(5088) called with curMem=32768, maxMem=278302556
14/11/15 22:39:13 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 5.0 KB, free 265.4 MB)
14/11/15 22:39:13 INFO DAGScheduler: Submitting 1 missing tasks from Stage 0 (PythonRDD[3] at RDD at PythonRDD.scala:43)
14/11/15 22:39:13 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
14/11/15 22:39:13 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, PROCESS_LOCAL, 1221 bytes)
14/11/15 22:39:13 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
14/11/15 22:39:13 INFO HadoopRDD: Input split: file:/G:/SparkTest/spark-1.1.0/spark-1.1.0/bin/FeatureMatrix.txt:0+8103732
14/11/15 22:39:13 INFO PythonRDD: Times: total = 264, boot = 233, init = 29, finish = 2
14/11/15 22:39:13 ERROR PythonRDD: Python worker exited unexpectedly (crashed)
java.net.SocketException: Connection reset by peer: socket write error
at java.net.SocketOutputStream.socketWrite0(Native Method)
at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:113)
at java.net.SocketOutputStream.write(SocketOutputStream.java:159)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at java.io.FilterOutputStream.write(FilterOutputStream.java:97)
at org.apache.spark.api.python.PythonRDD$.writeUTF(PythonRDD.scala:533)
at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:341)
at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:340)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:340)
at org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply$mcV$sp(PythonRDD.scala:209)
at org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
at org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1311)
at org.apache.spark.api.python.PythonRDD$WriterThread.run(PythonRDD.scala:183)
14/11/15 22:39:13 ERROR PythonRDD: This may have been caused by a prior exception:
java.net.SocketException: Connection reset by peer: socket write error
at java.net.SocketOutputStream.socketWrite0(Native Method)
at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:113)
at java.net.SocketOutputStream.write(SocketOutputStream.java:159)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at java.io.FilterOutputStream.write(FilterOutputStream.java:97)
at org.apache.spark.api.python.PythonRDD$.writeUTF(PythonRDD.scala:533)
at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:341)
at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:340)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:340)
at org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply$mcV$sp(PythonRDD.scala:209)
at org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
at org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1311)
at org.apache.spark.api.python.PythonRDD$WriterThread.run(PythonRDD.scala:183)
14/11/15 22:39:13 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
java.net.SocketException: Connection reset by peer: socket write error
at java.net.SocketOutputStream.socketWrite0(Native Method)
at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:113)
at java.net.SocketOutputStream.write(SocketOutputStream.java:159)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at java.io.FilterOutputStream.write(FilterOutputStream.java:97)
at org.apache.spark.api.python.PythonRDD$.writeUTF(PythonRDD.scala:533)
at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:341)
at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:340)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:340)
at org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply$mcV$sp(PythonRDD.scala:209)
at org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
at org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1311)
at org.apache.spark.api.python.PythonRDD$WriterThread.run(PythonRDD.scala:183)
14/11/15 22:39:13 WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, localhost): java.net.SocketException: Connection reset by peer: socket write error
java.net.SocketOutputStream.socketWrite0(Native Method)
java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:113)
java.net.SocketOutputStream.write(SocketOutputStream.java:159)
java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
java.io.DataOutputStream.write(DataOutputStream.java:107)
java.io.FilterOutputStream.write(FilterOutputStream.java:97)
org.apache.spark.api.python.PythonRDD$.writeUTF(PythonRDD.scala:533)
org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:341)
org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:340)
scala.collection.Iterator$class.foreach(Iterator.scala:727)
scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:340)
org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply$mcV$sp(PythonRDD.scala:209)
org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1311)
org.apache.spark.api.python.PythonRDD$WriterThread.run(PythonRDD.scala:183)
14/11/15 22:39:13 ERROR TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
14/11/15 22:39:13 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
14/11/15 22:39:13 INFO TaskSchedulerImpl: Cancelling stage 0
14/11/15 22:39:13 INFO DAGScheduler: Failed to run runJob at PythonRDD.scala:296
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "G:\SparkTest\spark-1.1.0\spark-1.1.0\python\pyspark\mllib\classification.py", line 178, in train
return _regression_train_wrapper(sc, train_func, SVMModel, data, initialWeights)
File "G:\SparkTest\spark-1.1.0\spark-1.1.0\python\pyspark\mllib\_common.py", line 430, in _regression_train_wrapper
initial_weights = _get_initial_weights(initial_weights, data)
File "G:\SparkTest\spark-1.1.0\spark-1.1.0\python\pyspark\mllib\_common.py", line 415, in _get_initial_weights
initial_weights = _convert_vector(data.first().features)
File "G:\SparkTest\spark-1.1.0\spark-1.1.0\python\pyspark\rdd.py", line 1167, in first
return self.take(1)[0]
File "G:\SparkTest\spark-1.1.0\spark-1.1.0\python\pyspark\rdd.py", line 1153, in take
res = self.context.runJob(self, takeUpToNumLeft, p, True)
File "G:\SparkTest\spark-1.1.0\spark-1.1.0\python\pyspark\context.py", line 770, in runJob
it = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, javaPartitions, allowLocal)
File "G:\SparkTest\spark-1.1.0\spark-1.1.0\python\lib\py4j-0.8.2.1-src.zip\py4j\java_gateway.py", line 538, in __call__
File "G:\SparkTest\spark-1.1.0\spark-1.1.0\python\lib\py4j-0.8.2.1-src.zip\py4j\protocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, lo
host): java.net.SocketException: Connection reset by peer: socket write error
java.net.SocketOutputStream.socketWrite0(Native Method)
java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:113)
java.net.SocketOutputStream.write(SocketOutputStream.java:159)
java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
java.io.DataOutputStream.write(DataOutputStream.java:107)
java.io.FilterOutputStream.write(FilterOutputStream.java:97)
org.apache.spark.api.python.PythonRDD$.writeUTF(PythonRDD.scala:533)
org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:341)
org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$2.apply(PythonRDD.scala:340)
scala.collection.Iterator$class.foreach(Iterator.scala:727)
scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:340)
org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply$mcV$sp(PythonRDD.scala:209)
org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1311)
org.apache.spark.api.python.PythonRDD$WriterThread.run(PythonRDD.scala:183)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>>> 14/11/15 23:22:52 INFO BlockManager: Removing broadcast 1
14/11/15 23:22:52 INFO BlockManager: Removing block broadcast_1
14/11/15 23:22:52 INFO MemoryStore: Block broadcast_1 of size 5088 dropped from memory (free 278269788)
14/11/15 23:22:52 INFO ContextCleaner: Cleaned broadcast 1
最佳答案
很简单
conf = SparkConf().setMaster("local").setAppName("RatingsHistogram")
sc = SparkContext(conf = conf)
lines = sc.textFile("file:///SparkCourse/filter_1.csv",2000)
print lines.first()
sc.textfile
时,为分区数添加一个或多个参数到一个较大的值。
关于apache-spark - Apache Spark:大型数据集的pyspark崩溃,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26954566/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!