- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我的问题与这个有关 here ,但我正在使用 PyCharm,并根据此 guide 使用 Python 解释器设置了我的虚拟环境,第 5 页。
当我运行我的 tensorflow 代码时,我收到警告:
Your CPU supports instructions that this TensorFlow binary was notcompiled to use: AVX2
最佳答案
Anaconda/conda 作为包管理工具:
假设你已经在你的机器上安装了 anaconda/conda,如果没有按照这个 - https://docs.anaconda.com/anaconda/install/windows/
conda create --name tensorflow_optimized python=3.7
conda activate tensorflow_optimized
# you need intel's tensorflow version that's optimized to use SSE4.1 SSE4.2 AVX AVX2 FMA
conda install tensorflow-mkl -c anaconda
#run this to check if the installed version is using MKL,
#which in turns uses all the optimizations that your system provide.
python -c "import tensorflow as tf; tf.test.is_gpu_available(cuda_only=False, min_cuda_compute_capability=None)"
# you should see something like this as the output.
2020-07-14 19:19:43.059486: I tensorflow/core/platform/cpu_feature_guard.cc:145] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in non-MKL-DNN operations, rebuild TensorFlow with the appropriate compiler flags.
pip3 作为包管理工具:
py -m venv tensorflow_optimized
.\tensorflow_optimized\Scripts\activate
#once the env is activated, you need intel's tensorflow version
#that's optimized to use SSE4.1 SSE4.2 AVX AVX2 FMA
pip install intel-tensorflow
#run this to check if the installed version is using MKL,
#which in turns uses all the optimizations that your system provide.
py -c "import tensorflow as tf; tf.test.is_gpu_available(cuda_only=False, min_cuda_compute_capability=None)"
# you should see something like this as the output.
2020-07-14 19:19:43.059486: I tensorflow/core/platform/cpu_feature_guard.cc:145] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in non-MKL-DNN operations, rebuild TensorFlow with the appropriate compiler flags.
一旦你有了这个,你就可以在 pycharm 中设置使用这个环境。
where python
在 window 上,
which python
在 Linux 和 Mac 上,当 env 被激活时,应该为您提供解释器的路径。在 Pycharm 中,
where python
的路径->点击确定
关于python - 在 PyCharm 的虚拟环境中更新 Tensorflow 二进制文件以使用 AVX2,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62773324/
我正在尝试优化一些矩阵计算,我想知道是否可以在编译时检测 SSE/SSE2/AVX/AVX2/AVX-512/AVX-128-FMA/KCVI[ 1] 是否由编译器启用?非常适合 GCC 和 Clan
我想仅使用avx而不是avx2来实现64位转置操作。它应该这样做: // in = Hh Hl Lh Ll // | X | // out = Hh Lh Hl Ll 这就是使
如果我有一个 AVX 寄存器,里面有 4 个 double 值,我想将它的反向存储在另一个寄存器中,是否可以用一个内部命令来实现? 例如:如果我在 SSE 寄存器中有 4 个 float ,我可以使用
最初我试图重现 Agner Fog 的微体系结构指南部分“YMM 和 ZMM 向量指令的预热期”中描述的效果,它说: The processor turns off the upper parts o
我的 C++ 代码使用 SSE,现在我想改进它以支持 AVX(当它可用时)。因此,我检测 AVX 何时可用并调用使用 AVX 命令的函数。我使用 Win7 SP1 + VS2010 SP1 和带有 A
我有一大块内存,比如说 256 KiB 或更长。我想计算整个 block 中 1 位的数量,或者换句话说:将所有字节的“总体计数”值相加。 我知道 AVX-512 有一个 VPOPCNTDQ inst
有多快 tensorflow-gpu与没有 AVX 和 AVX2 相比,有 AVX 和 AVX2 吗? 我试图使用谷歌找到答案,但没有成功。很难重新编译tensorflow-gpu对于 Windows
为什么avx sqrt(非压缩)指令有三个操作数? vsqrtsd xmm1, xmm2, xmm3 这是否意味着类似于 xmm1=xmm2=sqrt(xmm3)? 编辑:下面的详细答案但总之流水线的
我正在研究Intel intrinsics guide的展开和压缩操作。我对这两个概念感到困惑: 对于__m128d _mm_mask_expand_pd (__m128d src, __mmask8
我在 Intel Intrinsic Guide v2.7 中找不到它们。您知道 AVX 或 AVX2 指令集是否支持它们吗? 最佳答案 原始 AVX 指令集中没有分散或收集指令。 AVX2 添加了收
我正在尝试将函数转换为 AVX 版本。函数本身基本上只是比较浮点数并返回真/假取决于计算。 这是原始函数: bool testSingle(float* thisFloat, float* other
我遇到了 AVX 内部指令 _mm256_testc_pd() 的一个非常奇怪的行为。在这里你可以看到这个功能的描述 https://software.intel.com/sites/landingp
我有一个 256 位 AVX 寄存器,其中包含 4 个单精度复数,存储为实数、虚数、实数、虚数等。我目前正在将整个 256 位寄存器写回内存并在那里求和,但这似乎效率低下. 如何使用 AVX(或 AV
#include "stdio.h" #include "math.h" #include "stdlib.h" #include "x86intrin.h" void dd_m(double *cl
有没有办法对 AVX 寄存器进行水平异或——特别是对 256 位寄存器的四个 64 位组件进行异或? 目标是获得 AVX 寄存器的所有 4 个 64 位组件的异或。它本质上与水平添加( _mm256_
当我尝试使用 AVX 获取数据时,出现运行时错误 - 段错误: int i = 0; const int sz = 9; size_t *src1 = (size_t *)_mm_malloc(sz*
当我尝试使用 AVX 展开最简单的循环时,出现运行时错误 - 段错误: const int sz = 9; float *src = (float *)_mm_malloc(sz*
我想将两个 256 位 vector (__m256d) 合并为一个 256位 vector ,通过省略每个 64 位 double 的上半部分。 所以,如果在下面,a_i, b_i, ... 是 3
我测试了以下简单的功能 void mul(double *a, double *b) { for (int i = 0; i #include #include #include #defi
_mm_i32gather_epi32() 的当前英特尔内在函数指南将每个子词的计算地址描述为: addr := base_addr + SignExtend64(vindex[m+31:m]) *
我是一名优秀的程序员,十分优秀!