gpt4 book ai didi

python - 来自重采样方法与 scipy.stats.chi2_contigency 的卡方检验 P 值

转载 作者:行者123 更新时间:2023-12-03 20:48:04 24 4
gpt4 key购买 nike

本题引用“O'Relly Practical Statistics for Data Scientist 2nd Edition”第3章, session 卡方检验。
这本书提供了一个卡方测试用例的例子,它假设一个网站有三个不同的标题,有 1000 名访问者。结果显示了每个标题的点击次数。
观察到的数据如下:

Headline   A    B    C
Click 14 8 12
No-click 986 992 988
预期值计算如下:
Headline   A        B        C
Click 11.13 11.13 11.13
No-click 988.67 988.67 988.67
Pearson 残差定义为:
Pearson residual
table 现在在哪里:
Headline   A        B        C
Click 0.792 -0.990 0.198
No-click -0.085 0.106 -0.021
卡方统计量是 Pearson 残差平方的总和: enter image description here .这是 1.666
到现在为止还挺好。
现在是重采样部分:
1. Assuming a box of 34 ones and 2966 zeros
2. Shuffle, and take three samples of 1000 and count how many ones(Clicks)
3. Find the squared differences between the shuffled counts and expected counts then sum them.
4. Repeat steps 2 to 3, a few thousand times.
5. The P-value is how often does the resampled sum of squared deviations exceed the observed.
本书提供的重采样python测试代码如下:
(可从 https://github.com/gedeck/practical-statistics-for-data-scientists/tree/master/python/code 下载)
## Practical Statistics for Data Scientists (Python)
## Chapter 3. Statistial Experiments and Significance Testing
# > (c) 2019 Peter C. Bruce, Andrew Bruce, Peter Gedeck

# Import required Python packages.

from pathlib import Path
import random

import pandas as pd
import numpy as np

from scipy import stats
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats import power

import matplotlib.pylab as plt

DATA = Path('.').resolve().parents[1] / 'data'

# Define paths to data sets. If you don't keep your data in the same directory as the code, adapt the path names.

CLICK_RATE_CSV = DATA / 'click_rates.csv'

...

## Chi-Square Test
### Chi-Square Test: A Resampling Approach

# Table 3-4
click_rate = pd.read_csv(CLICK_RATE_CSV)
clicks = click_rate.pivot(index='Click', columns='Headline', values='Rate')
print(clicks)

# Table 3-5
row_average = clicks.mean(axis=1)
pd.DataFrame({
'Headline A': row_average,
'Headline B': row_average,
'Headline C': row_average,
})

# Resampling approach
box = [1] * 34
box.extend([0] * 2966)
random.shuffle(box)

def chi2(observed, expected):
pearson_residuals = []
for row, expect in zip(observed, expected):
pearson_residuals.append([(observe - expect) ** 2 / expect
for observe in row])
# return sum of squares
return np.sum(pearson_residuals)

expected_clicks = 34 / 3
expected_noclicks = 1000 - expected_clicks
expected = [34 / 3, 1000 - 34 / 3]
chi2observed = chi2(clicks.values, expected)

def perm_fun(box):
sample_clicks = [sum(random.sample(box, 1000)),
sum(random.sample(box, 1000)),
sum(random.sample(box, 1000))]
sample_noclicks = [1000 - n for n in sample_clicks]
return chi2([sample_clicks, sample_noclicks], expected)

perm_chi2 = [perm_fun(box) for _ in range(2000)]

resampled_p_value = sum(perm_chi2 > chi2observed) / len(perm_chi2)

print(f'Observed chi2: {chi2observed:.4f}')
print(f'Resampled p-value: {resampled_p_value:.4f}')

chisq, pvalue, df, expected = stats.chi2_contingency(clicks)
print(f'Observed chi2: {chi2observed:.4f}')
print(f'p-value: {pvalue:.4f}')
现在,我运行 perm_fun(box) 2,000 次并获得了 0.4775 的重采样 P 值。
但是,如果我运行 perm_fun(box) 10,000 次和 100,000 次,我两次都能够获得 0.84 的重采样 P 值。在我看来,P 值应该在 0.84 左右。
为什么 stats.chi2_contigency 显示的数字如此之小?
我运行 2000 次的结果是:
Observed chi2: 1.6659
Resampled p-value: 0.8300
Observed chi2: 1.6659
p-value: 0.4348
如果我运行它 10,000 次,结果是:
Observed chi2: 1.6659
Resampled p-value: 0.8386
Observed chi2: 1.6659
p-value: 0.4348
软件版本:
pandas.__version__:         0.25.1
numpy.__version__: 1.16.5
scipy.__version__: 1.3.1
statsmodels.__version__: 0.10.1
sys.version_info: 3.7.4

最佳答案

我运行了您的代码,尝试了 2000、10000 和 100000 次循环,并且所有 3 次都接近 0.47。但是,我确实在这一行遇到了一个我必须修复的错误:

resampled_p_value = sum(perm_chi2 > chi2observed) / len(perm_chi2)
这里 perm_chi2是一个列表和 chi2observed是一个浮点数,所以我想知道这段代码是如何为您运行的(也许您为修复它所做的一切都是错误的根源)。无论如何,将其更改为预期的
resampled_p_value = sum([1*(x > chi2observed) for x in perm_chi2]) / len(perm_chi2)
允许我运行它并接近 0.47。
确保在更改迭代次数时,只更改 2000,而不更改其他任何数字。

关于python - 来自重采样方法与 scipy.stats.chi2_contigency 的卡方检验 P 值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64600459/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com